GH SERIES Gearheads for High-precision Control taking your servomotor performance to the limit

The GH SERIES Gearheads are based upon the highly successful, high-precision RV Series Reduction Gears. The high-performance RV has over 2 million units in service in various applications around the world today. The GH SERIES are high-precision servomotor gearheads that provide significant advantages in terms of ease-of-use and cost for performance.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features and Configurations</td>
<td>02</td>
</tr>
<tr>
<td>Principle of Operation</td>
<td>03</td>
</tr>
<tr>
<td>Specifications</td>
<td>04</td>
</tr>
<tr>
<td>Glossary</td>
<td>05</td>
</tr>
<tr>
<td>Selection Flow Chart</td>
<td>06</td>
</tr>
<tr>
<td>Performance</td>
<td>08</td>
</tr>
<tr>
<td>Model Code</td>
<td>09</td>
</tr>
<tr>
<td>External Dimension Drawing Reduction Gear</td>
<td>10</td>
</tr>
<tr>
<td>Model Code Selection (Precautions)</td>
<td>15</td>
</tr>
<tr>
<td>Combination with Non-standard Product</td>
<td>22</td>
</tr>
<tr>
<td>Engineering Notes</td>
<td>24</td>
</tr>
<tr>
<td>Appendix</td>
<td>29</td>
</tr>
</tbody>
</table>
Features and Configurations

High shock load capability
- The double-end support design and unique pin gear mechanism provide the following advantages:
 1. Capable of 7 times the rated torque
 2. High rigidity as well as small backlash \([6 \text{ arc.min}]\)
 3. Capable of high output speed with low reduction ratio \((1/11 \text{ to } 1/31)\)
 4. High torque density

Heavy load support
- A set of internal main bearings (large angular ball bearings) enables complete support of heavy external loads.

Maximum ease of use
- 1. Pre greased
- 2. Easy motor mounting

Rotation direction
The rotation direction of the output shaft is same as that of the input spline.
Principle of Operation

1. Rotation of the servomotor is transmitted through the input gear to the spur gears, and the speed is reduced accordingly with the gear ratio between the input gear and the spur gears. This is the first reduction section <Fig. 1>.

2. Since they are directly connected, the crankshafts have the same rotational speed as the spur gears <Fig. 1>.

3. Two RV gears are mounted around the needle bearings on the eccentric region of the crankshaft. (In order to balance the equal amount of force, two RV gears are mounted) <Fig. 2>.

4. When the crankshafts rotate, the RV gears mounted on the eccentric sections also revolve eccentrically around the input axis (crank movement) <Fig. 2>.

5. Pins are arrayed in a constant pitch in the grooves inside the case. The number of pins is just one larger than the number of RV teeth <Fig. 3>.

6. As the crankshafts revolve one complete rotation, the RV gears revolve eccentrically one pitch of a pin (crank movement), with all the RV teeth in contact with all of the pins <Fig. 3>.

7. The rotation is then transmitted to the shaft (output shaft) via the crankshaft. At this time, the shaft rotation speed can be reduced in proportion to the number of pins against the crankshaft <Fig. 3>.

8. The total reduction ratio is the product of the first reduction ratio multiplied by the second reduction ratio.

Fig. 1 First reduction section

Fig. 2 Crankshaft section

Fig. 3 Second reduction section
Note:
*1. The rating table shows the specification values of each reduction gear.
*2. The allowable output speed may be limited by heat depending on the operation rate. If you use this product with the operation rate per cycle exceeding 50% or allowable output speed during continuous operation, contact us.
*3. For the inertia moment value, both the reduction gear and the input gear are taken into consideration. This, however, does not include the inertia moment of the input spline.

Specifications

Rating Table (*1)

<table>
<thead>
<tr>
<th>Model Code</th>
<th>Ratio Code</th>
<th>Ratio</th>
<th>Rated Torque (To)</th>
<th>Rated Output Speed (No)</th>
<th>Allowable Torque</th>
<th>Continuous Operation</th>
<th>Intermittent Operation</th>
<th>Backlash</th>
<th>Inertia Moment I</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH7</td>
<td>11</td>
<td>461/41</td>
<td>69 (7)</td>
<td>50</td>
<td>206 (21)</td>
<td>150</td>
<td>270</td>
<td>6</td>
<td>0.440 x 10^-4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>480 (49)</td>
<td></td>
<td></td>
<td></td>
<td>0.233 x 10^-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>153/5</td>
<td></td>
<td></td>
<td>0.173 x 10^-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH17</td>
<td>11</td>
<td>11</td>
<td>167 (17)</td>
<td>50</td>
<td>500 (51)</td>
<td>1166 (119)</td>
<td>150</td>
<td>270</td>
<td>1.751 x 10^-4</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>960 (96)</td>
<td></td>
<td></td>
<td></td>
<td>0.806 x 10^-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>0.440 x 10^-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH24</td>
<td>11</td>
<td>11</td>
<td>235 (24)</td>
<td>50</td>
<td>706 (72)</td>
<td>1646 (168)</td>
<td>150</td>
<td>250</td>
<td>1.410 x 10^-4</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>618 (618)</td>
<td></td>
<td></td>
<td></td>
<td>0.818 x 10^-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>0.444 x 10^-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH40</td>
<td>11</td>
<td>419/39</td>
<td>392 (40)</td>
<td>50</td>
<td>1176 (120)</td>
<td>2744 (280)</td>
<td>150</td>
<td>250</td>
<td>0.711 x 10^-3</td>
<td>35.5</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>451 (451)</td>
<td></td>
<td></td>
<td></td>
<td>0.451 x 10^-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>723/23</td>
<td></td>
<td></td>
<td>0.219 x 10^-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH100</td>
<td>21</td>
<td>20.375</td>
<td>980 (100)</td>
<td>50</td>
<td>2942 (300)</td>
<td>6865 (700)</td>
<td>65</td>
<td>135</td>
<td>1.68 x 10^-3</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>15.4</td>
<td></td>
<td></td>
<td>1.31 x 10^-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
*1. The rating table shows the specification values of each reduction gear.
*2. The allowable output speed may be limited by heat depending on the operation rate. If you use this product with the operation rate per cycle exceeding 50% or allowable output speed during continuous operation, contact us.
*3. For the inertia moment value, both the reduction gear and the input gear are taken into consideration. This, however, does not include the inertia moment of the input spline.

Capacity of Main Bearing

<table>
<thead>
<tr>
<th>Model Code</th>
<th>Allowable Moment (Mo)</th>
<th>Maximum Thrust Load (W)</th>
<th>Dimension (α1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-m (Kgf-m)</td>
<td>N (Kgf)</td>
<td>Flange type</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>GH7</td>
<td>460 (47)</td>
<td>1372 (140)</td>
<td>133.3</td>
</tr>
<tr>
<td>GH17</td>
<td>804 (82)</td>
<td>1960 (200)</td>
<td>156.9</td>
</tr>
<tr>
<td>GH24</td>
<td>843 (86)</td>
<td>2940 (300)</td>
<td>152.1</td>
</tr>
<tr>
<td>GH40</td>
<td>1823 (186)</td>
<td>2940 (300)</td>
<td>198.1</td>
</tr>
<tr>
<td>GH100</td>
<td>4900 (500)</td>
<td>5586 (570)</td>
<td>262.0</td>
</tr>
</tbody>
</table>

Load moment

\[
Mc = \left\{ \frac{W_1 \times (\alpha_1 + L_1) + W_2 \times L_2}{10^{-3}} \right\}
\]

Mc ≤ Mo

Mc : Load moment (N-m)
W1, W2 : Load (N)
(α1 + L1) , L2 : Distance to the point of load application (mm)
L1 : Distance from the mounting surface of the output shaft to the point of load application (mm)

Flange Type External Load Diagram

![Flange Type External Load Diagram](image)

Shaft Type External Load Diagram

![Shaft Type External Load Diagram](image)
Glossary

Life Rating
The lifetime resulting from the operation with the rated torque and the rated output speed is referred to as the “life rating”. For the GH reduction gear, the life rating is 6,000 hours continuous.

Allowable Acceleration/Deceleration
When the machine starts or stops, the load torque to be applied to the reduction gear is larger than the constant-speed torque due to the effect of the inertia torque of the rotation part. In such a situation, the allowable torque during acceleration/deceleration is referred to as “allowable acceleration/deceleration torque”.

Note: Be careful that the load torque, which is applied during normal operation, does not exceed the allowable acceleration/deceleration torque.

Momentary Maximum Allowable Torque
A large torque may be applied to the reduction gear due to execution of emergency stop or by an external shock. In such a situation, the allowable value of the momentary applied torque is referred to as “momentary maximum allowable torque”.

Note: Be careful that the momentary excessive torque does not exceed the momentary maximum allowable torque.

Allowable Output Speed [Continuous]
The allowable output speed during the operation in which the maximum torque is below the rated torque of the reduction gear and also when the operation rate of the reduction gear per cycle is below 30%, it is referred to as “allowable output speed [Continuous]”.

Note: Maintain the environment and operation conditions so that the temperature of the reduction gear case is 60˚C or lower.

Allowable Output Speed [Intermittent]
The allowable output speed when the reduction gear operation rate per cycle exceeds 50% is referred to as “allowable output speed [Intermittent]”.

Note: Maintain the environment and operation conditions so that the temperature of the reduction gear case is 60˚C or lower.

Allowable Moment and Maximum Axial Load
The external load moment may be applied to the reduction gear, and the allowable value of the external moment is referred to as “allowable moment”, while the allowable value of the axial load is referred to as “maximum axial load”.

Note: When the load moment and the axial load are applied concurrently, ensure that the reduction gear is used within the corresponding allowable moment range, which is indicated in the allowable moment diagram.

Rigidity (Torsional Rigidity and Lost Motion) and Backlash
When torque is applied to the output shaft while the input shaft is fixed, torsion is generated on the output shaft according to the torque value and a hysteresis curve results.

- The value of b/a is referred to as “torsional rigidity”.
- The torsion angle at the mid point of the hysteresis curve width at ±3% of rated torque is referred to as “lost motion”.
- The torsion angles when the torque indicated by the hysteresis curve is zero are referred to as “backlash”.

Hysteresis Curve

![Hysteresis Curve Diagram]

Allowable Moment Diagram

![Allowable Moment Diagram]
Check the condition of the load torque applied to the reduction gear. A sample diagram is shown below.
Check the condition of external load applied to the reduction gear. When the load moment and the axial load are applied concurrently, ensure that the reduction gear is used within the corresponding allowable moment range, which is indicated in the Allowable Moment Diagram.

Selection example

(1) Study of load characteristics

- **Usage condition**

 \[
 \begin{align*}
 T_1 &= 391 \text{ N-m} \\
 T_2 &= 98 \text{ N-m} \\
 T_3 &= 193 \text{ N-m} \\
 T_{\text{em}} &= 2600 \text{ N-m} \\
 t_1 &= 0.1 \text{ sec} \\
 t_2 &= 0.15 \text{ sec} \\
 t_3 &= 0.1 \text{ sec} \\
 t_{\text{em}} &= 0.02 \text{ sec} \\
 N_1 &= N_3 = 50 \text{ r.p.m.} \\
 N_2 &= 100 \text{ r.p.m.} \\
 N_{\text{em}} &= 100 \text{ r.p.m.}
 \end{align*}
 \]

- **Calculation of average load torque**

 \[
 T_m = \frac{1}{3} \left(0.1 \times 50 \times 391 + 0.15 \times 100 \times 98 + 0.1 \times 50 \times 193 \right) \\
 = 250 \text{ Nm}
 \]

- **Calculation of average output speed**

 \[
 N_m = \frac{0.1 \times 50 + 0.15 \times 100 + 0.1 \times 50}{0.1 + 0.15 + 0.1} = 71.4 \text{ r.p.m.}
 \]

- **Selection of tentative frame number**

 According to the \(T_m\) and \(N_m\) values, select GH40 tentatively.
 \(250 \text{ N-m} < 392 \text{ N-m} \quad 71.4 \text{ r.p.m.} < 150 \text{ r.p.m.}\)

- **Calculation of life rating**

 \[
 L_h = 6000 \times \frac{50}{71.4} \times 18818 \times \frac{10}{3} = 18818 \text{ Hr} \\
 18818 > 10000 \\
 \text{Required life rating}
 \]

- **Study of maximum output speed**

 \(100 \text{ r.p.m.} < 150 \text{ r.p.m.}\)

- **Study of torque for startup/stop**

 \(T_{\text{max}} = T_1 = 391 \text{ N-m} < 1176 \text{ N-m}\)

- **Study of torque at emergency stop or external shock**

 \(T_{\text{em}} = 2600 \text{ N-m} < 2744 \text{ N-m}\)

- **Study of allowable output speed of GH40 (during continuous operation)**

- **Study of thrust load**

 \(900 \text{ N} < 2940 \text{ N}\)

- **Study of momentary maximum allowable torque of GH40**

 \[
 C_{\text{em}} = \frac{775 \times 392}{2600} \times \frac{10}{3} = 1391 \text{ times} \\
 150 \text{ times} < 1391 \text{ times} \\
 \text{Actual number of apply times}
 \]

(2) Study of main bearing capacity

- **External load condition**

 \(W_1 = 1350 \text{ N} \quad L_1 = 200 \text{ mm}\) \\
 \(W_2 = 900 \text{ N} \quad L_2 = 100 \text{ mm}\)

- **Study of thrust load**

 \(900 \text{ N} < 2940 \text{ N}\)

- **Verification of load moment (flange type)**

 \[
 Mc = \left(\frac{198.1 + 200}{1000} \right) + \left(\frac{900}{1000} \right) \\
 = 627 \text{ N-m} \\
 627 \text{ N-m} < 1823 \text{ N-m}
 \]

- **GH40 is finally selected (all conditions are satisfied).**

Study of thrust load

(Refer to page 04)

\[
Mc = \left(W_1 \times (\alpha_1 + L_1) + W_2 \times L_2 \times 10^{-3} \right) \\
\]

- **Select the lower model number. Decrease \(W_2\).**

- **Select the higher model number. Decrease the load.**
No-load running torque

Case temperature: 20˚C
Lubricant: Grease (Molywhite RE00)

The no-load running torque that is converted to the input shaft side value should be figured out according to the following equation:

\[
\text{Input shaft equivalent no-load running torque (N-m)} = \frac{\text{Input shaft equivalent no-load running torque (N-m)}}{\text{Speed ratio}}
\]

![Graph showing the relationship between output shaft speed (r.p.m.) and input shaft equivalent no-load running torque (N-m), with lines for GH100, GH40, GH24, GH17, and GH7.]}
When ordering or making an inquiry, use the following model code.

Selection of model code

1. Only 21 and 31 can be used as the ratio code of the GH100.
2. Only the flange type output shaft is available for the GH100.
3. Select the model code according to the attached Quick Selection Table of Model Code.
4. When you use a servomotor not listed in the Quick Selection Table of Model Code, select the parts compatible with the servomotor from among the input spline sets and motor flanges (standard/semi-processed product) that we provide (refer to pages 15 to 23).
5. For the customized specifications, contact us.

GH reduction gear

Output shaft type

- Output flange type
- Output shaft type

<table>
<thead>
<tr>
<th>Model code</th>
<th>Ratio code</th>
<th>Input spline set</th>
<th>Motor flange code</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>11</td>
<td>A to ZZ</td>
<td>Standard</td>
</tr>
<tr>
<td>17</td>
<td>21</td>
<td>Blank</td>
<td>Y1</td>
</tr>
<tr>
<td>24</td>
<td>31</td>
<td>Blank</td>
<td>Y2</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>None</td>
<td>Blank</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>Z</td>
<td>Blank</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output shaft type code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flange P</td>
</tr>
<tr>
<td>Shaft S</td>
</tr>
</tbody>
</table>
The total length does not include the length of the motor flange.

Output flange type

Output shaft type
The total length does not include the length of the motor flange.
External Dimension Drawing Reduction Gear

The total length does not include the length of the motor flange.
The total length does not include the length of the motor flange.
The total length does not include the length of the motor flange.
1. Select the model code that is compatible with the servomotor being used according to the Quick Selection Table of Model Code.

2. If a compatible servomotor is not listed in the Quick Selection Table of Model Code, select a part that is compatible with the servomotor according to the external dimension drawings for the input spline set and motor flange attached on the following pages.

Check the thickness of the motor flange according to the following equation:

Thickness of motor flange \(D = (A + LR - L) - LL \)

<table>
<thead>
<tr>
<th>Model Code</th>
<th>Input Spline Insertion Amount (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH7</td>
<td>100 +.8 -.7</td>
</tr>
<tr>
<td>GH24</td>
<td>106 -.7 -.4</td>
</tr>
<tr>
<td>GH100</td>
<td>202 -.5 -1.0</td>
</tr>
</tbody>
</table>

Combination of reduction gear and servomotor

1. The combinations that satisfy the following equation are recommended.

 \(\text{(Rated torque of motor} \times 0.5) < \text{(Rated torque of reduction gear/(Speed ratio} \times 0.8)) < \text{(Rated torque of motor} \times 1.5) \)

2. Select the combinations that satisfy the following equation.

 \(\text{(Maximum torque of motor)} < \text{(Momentary maximum torque of reduction gear/(Speed ratio} \times 0.8)) \)

3. Limitation must be imposed to the motor torque when the condition indicated in 2 above cannot be satisfied.

4. For more precise motor selection, the effective torque, load inertia moment, brake torque, regenerative ability, and so forth, must also be considered.

Note:

Calculate the LR of the 1/10 taper shaft with the dimension excluding the threaded portion at the shaft tip.
For straight shaft without key

<table>
<thead>
<tr>
<th>Model</th>
<th>Code</th>
<th>Parts No.</th>
<th>Input Spline Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>10S421A*</td>
<td>A</td>
</tr>
<tr>
<td>S</td>
<td>10S421-*</td>
<td>124</td>
<td>53</td>
</tr>
<tr>
<td>A</td>
<td>10S421A#</td>
<td>124</td>
<td>53</td>
</tr>
<tr>
<td>B</td>
<td>10S421B#</td>
<td>124</td>
<td>53</td>
</tr>
<tr>
<td>D</td>
<td>10S421D#</td>
<td>123</td>
<td>53</td>
</tr>
<tr>
<td>M</td>
<td>10S421M#</td>
<td>126</td>
<td>53</td>
</tr>
<tr>
<td>N</td>
<td>10S421N#</td>
<td>120</td>
<td>53</td>
</tr>
<tr>
<td>Q</td>
<td>10S421Q#</td>
<td>144</td>
<td>63</td>
</tr>
<tr>
<td>R</td>
<td>10S421R#</td>
<td>114</td>
<td>53</td>
</tr>
<tr>
<td>T</td>
<td>10S421T#</td>
<td>124</td>
<td>53</td>
</tr>
<tr>
<td>U</td>
<td>10S421U#</td>
<td>124</td>
<td>48</td>
</tr>
<tr>
<td>AF</td>
<td>10S421AF#</td>
<td>117</td>
<td>53</td>
</tr>
<tr>
<td>AY</td>
<td>10S421AY#</td>
<td>105</td>
<td>53</td>
</tr>
<tr>
<td>AZ</td>
<td>10S421AZ#</td>
<td>117</td>
<td>53</td>
</tr>
<tr>
<td>BA</td>
<td>10S421BA#</td>
<td>123</td>
<td>53</td>
</tr>
<tr>
<td>BB</td>
<td>10S421BB#</td>
<td>123</td>
<td>53</td>
</tr>
<tr>
<td>S</td>
<td>20S421-*</td>
<td>137</td>
<td>63</td>
</tr>
<tr>
<td>B</td>
<td>20S421B#</td>
<td>137</td>
<td>63</td>
</tr>
<tr>
<td>C</td>
<td>20S421C#</td>
<td>124</td>
<td>63</td>
</tr>
<tr>
<td>E</td>
<td>20S421E#</td>
<td>124</td>
<td>63</td>
</tr>
<tr>
<td>P</td>
<td>20S421P#</td>
<td>128</td>
<td>63</td>
</tr>
<tr>
<td>Q</td>
<td>20S421Q#</td>
<td>134</td>
<td>63</td>
</tr>
<tr>
<td>T</td>
<td>20S421T#</td>
<td>124</td>
<td>63</td>
</tr>
<tr>
<td>W</td>
<td>20S421W#</td>
<td>176</td>
<td>68</td>
</tr>
<tr>
<td>AB</td>
<td>20S421AB#</td>
<td>134</td>
<td>63</td>
</tr>
<tr>
<td>AC</td>
<td>20S421AC#</td>
<td>132</td>
<td>63</td>
</tr>
<tr>
<td>AF</td>
<td>20S421AF#</td>
<td>176</td>
<td>68</td>
</tr>
<tr>
<td>AL</td>
<td>20S421AL#</td>
<td>124</td>
<td>63</td>
</tr>
<tr>
<td>AQ</td>
<td>20S421AQ#</td>
<td>132</td>
<td>63</td>
</tr>
<tr>
<td>AR</td>
<td>20S421AR#</td>
<td>132</td>
<td>63</td>
</tr>
<tr>
<td>AS</td>
<td>20S421AS#</td>
<td>131</td>
<td>63</td>
</tr>
<tr>
<td>S</td>
<td>30S421-*</td>
<td>142</td>
<td>63</td>
</tr>
<tr>
<td>A</td>
<td>30S421A#</td>
<td>129</td>
<td>63</td>
</tr>
<tr>
<td>D</td>
<td>30S421D#</td>
<td>174</td>
<td>63</td>
</tr>
<tr>
<td>E</td>
<td>30S421E#</td>
<td>129</td>
<td>63</td>
</tr>
<tr>
<td>G</td>
<td>30S421G#</td>
<td>129</td>
<td>63</td>
</tr>
<tr>
<td>H</td>
<td>30S421H#</td>
<td>142</td>
<td>63</td>
</tr>
<tr>
<td>Q</td>
<td>30S421Q#</td>
<td>174</td>
<td>68</td>
</tr>
<tr>
<td>T</td>
<td>30S421T#</td>
<td>137</td>
<td>63</td>
</tr>
<tr>
<td>U</td>
<td>30S421U#</td>
<td>139</td>
<td>63</td>
</tr>
<tr>
<td>W</td>
<td>30S421W#</td>
<td>129</td>
<td>63</td>
</tr>
<tr>
<td>AA</td>
<td>30S421AA#</td>
<td>159</td>
<td>68</td>
</tr>
<tr>
<td>AB</td>
<td>30S421AB#</td>
<td>126</td>
<td>63</td>
</tr>
</tbody>
</table>
The part numbers attached with * at the end are our revised numbers. These are subject to change without advance notice. The shape of the part shown here is only a representation. For this reason, the actual shape may differ from the drawing shown here.

For 1/10 taper

Nominal diameter x Pitch Depth

Table

<table>
<thead>
<tr>
<th>Model</th>
<th>Code</th>
<th>Parts No.</th>
<th>Input Spline Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>GH24</td>
<td>AH</td>
<td>30S421AH*</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>AL</td>
<td>30S421AL*</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>AM</td>
<td>30S421AM*</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>AN</td>
<td>30S421AN*</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>AP</td>
<td>30S421AP*</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>40S421-*</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>40S421A*</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>40S421B*</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>40S421C*</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>40S421D*</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>40S421K*</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>40S421M*</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>40S421N*</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>40S421U*</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>40S421W*</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>AD</td>
<td>40S421AD*</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>AF</td>
<td>40S421AF*</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>AL</td>
<td>40S421AL*</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>AM</td>
<td>40S421AM*</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>AN</td>
<td>40S421AN*</td>
<td>177</td>
</tr>
<tr>
<td>GH40</td>
<td>A</td>
<td>60S421A*</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>60S421C*</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>60S421D*</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>60S421E*</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>60S421F*</td>
<td>216</td>
</tr>
<tr>
<td>GH100</td>
<td>A</td>
<td>60S421A*</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>60S421C*</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>60S421D*</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>60S421E*</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>60S421F*</td>
<td>216</td>
</tr>
</tbody>
</table>

For 1/10 taper

Nominal diameter x Pitch Depth

<table>
<thead>
<tr>
<th>Model</th>
<th>Code</th>
<th>Parts No.</th>
<th>Input Spline Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>GH7</td>
<td>G</td>
<td>10S422G*</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>10S422H*</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>10S422X*</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>10S422AB*</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>AR</td>
<td>10S422AR*</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>AS</td>
<td>10S422AS*</td>
<td>106</td>
</tr>
<tr>
<td>GH17</td>
<td>F</td>
<td>20S422F*</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>20S422R*</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>30S422F*</td>
<td>129</td>
</tr>
<tr>
<td>GH24</td>
<td>K</td>
<td>30S422K*</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>30S422L*</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>40S422E*</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>40S422H*</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>40S422X*</td>
<td>248</td>
</tr>
<tr>
<td>GH40</td>
<td>L</td>
<td>40S422L*</td>
<td>248</td>
</tr>
</tbody>
</table>

Thread

<table>
<thead>
<tr>
<th>Nom.Dia.</th>
<th>Pitch</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>P1.0</td>
<td>9</td>
</tr>
<tr>
<td>M10</td>
<td>P1.25</td>
<td>13</td>
</tr>
<tr>
<td>M8</td>
<td>P1.0</td>
<td>13</td>
</tr>
<tr>
<td>M6</td>
<td>P1.0</td>
<td>9</td>
</tr>
<tr>
<td>M12</td>
<td>P1.25</td>
<td>15</td>
</tr>
<tr>
<td>M6</td>
<td>P1.0</td>
<td>9</td>
</tr>
<tr>
<td>M8</td>
<td>P1.0</td>
<td>13</td>
</tr>
<tr>
<td>M10</td>
<td>P1.25</td>
<td>13</td>
</tr>
<tr>
<td>M10</td>
<td>P1.25</td>
<td>13</td>
</tr>
<tr>
<td>M10</td>
<td>P1.25</td>
<td>13</td>
</tr>
<tr>
<td>M20</td>
<td>P1.5</td>
<td>23</td>
</tr>
<tr>
<td>M10</td>
<td>P1.25</td>
<td>13</td>
</tr>
<tr>
<td>M20</td>
<td>P1.5</td>
<td>23</td>
</tr>
<tr>
<td>M36</td>
<td>P3.0</td>
<td>30</td>
</tr>
</tbody>
</table>
External Dimension Drawing
Input Spline Set

For straight shaft with key

![Diagram of a shaft and spline set with keyway]

<table>
<thead>
<tr>
<th>Model</th>
<th>Code</th>
<th>Parts No.</th>
<th>Input Spline Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>ØB</td>
</tr>
<tr>
<td>C</td>
<td>10S423C*</td>
<td>124</td>
<td>28</td>
</tr>
<tr>
<td>J</td>
<td>10S423J*</td>
<td>125</td>
<td>28</td>
</tr>
<tr>
<td>W</td>
<td>10S423W*</td>
<td>125</td>
<td>32</td>
</tr>
<tr>
<td>Y</td>
<td>10S423Y*</td>
<td>112</td>
<td>28</td>
</tr>
<tr>
<td>AC</td>
<td>10S423AC*</td>
<td>120</td>
<td>28</td>
</tr>
<tr>
<td>AD</td>
<td>10S423AD*</td>
<td>133</td>
<td>36</td>
</tr>
<tr>
<td>AH</td>
<td>10S423AH*</td>
<td>112</td>
<td>32</td>
</tr>
<tr>
<td>AK</td>
<td>10S423AK*</td>
<td>134</td>
<td>32</td>
</tr>
<tr>
<td>AM</td>
<td>10S423AM*</td>
<td>134</td>
<td>38</td>
</tr>
<tr>
<td>AN</td>
<td>10S423AN*</td>
<td>133</td>
<td>36</td>
</tr>
<tr>
<td>AP</td>
<td>10S423AP*</td>
<td>125</td>
<td>32</td>
</tr>
<tr>
<td>AQ</td>
<td>10S423AQ*</td>
<td>119</td>
<td>28</td>
</tr>
<tr>
<td>AT</td>
<td>10S423AT*</td>
<td>124</td>
<td>32</td>
</tr>
<tr>
<td>AU</td>
<td>10S423AU*</td>
<td>113</td>
<td>32</td>
</tr>
<tr>
<td>AW</td>
<td>10S423AW*</td>
<td>124</td>
<td>28</td>
</tr>
<tr>
<td>AX</td>
<td>10S423AX*</td>
<td>117</td>
<td>28</td>
</tr>
<tr>
<td>G</td>
<td>20S423G*</td>
<td>137</td>
<td>38</td>
</tr>
<tr>
<td>K</td>
<td>20S423K*</td>
<td>137</td>
<td>38</td>
</tr>
<tr>
<td>N</td>
<td>20S423N*</td>
<td>172</td>
<td>50</td>
</tr>
<tr>
<td>X</td>
<td>20S423X*</td>
<td>170</td>
<td>45</td>
</tr>
<tr>
<td>Y</td>
<td>20S423Y*</td>
<td>163</td>
<td>50</td>
</tr>
<tr>
<td>AD</td>
<td>20S421AD*</td>
<td>130</td>
<td>38</td>
</tr>
<tr>
<td>AA</td>
<td>20S423AA*</td>
<td>130</td>
<td>38</td>
</tr>
<tr>
<td>AE</td>
<td>20S423AE*</td>
<td>123</td>
<td>38</td>
</tr>
<tr>
<td>AK</td>
<td>20S423AK*</td>
<td>123</td>
<td>38</td>
</tr>
<tr>
<td>AP</td>
<td>20S423AP*</td>
<td>137</td>
<td>38</td>
</tr>
<tr>
<td>AT</td>
<td>20S423AT*</td>
<td>136</td>
<td>40</td>
</tr>
<tr>
<td>AU</td>
<td>20S423AU*</td>
<td>135</td>
<td>38</td>
</tr>
<tr>
<td>AX</td>
<td>20S423AX*</td>
<td>136</td>
<td>38</td>
</tr>
<tr>
<td>AY</td>
<td>20S423AY*</td>
<td>123</td>
<td>38</td>
</tr>
<tr>
<td>B</td>
<td>30S423B*</td>
<td>159</td>
<td>50</td>
</tr>
<tr>
<td>J</td>
<td>30S423J*</td>
<td>159</td>
<td>42</td>
</tr>
<tr>
<td>M</td>
<td>30S423M*</td>
<td>111</td>
<td>36</td>
</tr>
<tr>
<td>X</td>
<td>30S423X*</td>
<td>122</td>
<td>42</td>
</tr>
<tr>
<td>Y</td>
<td>30S423Y*</td>
<td>154</td>
<td>42</td>
</tr>
<tr>
<td>AD</td>
<td>30S423AD*</td>
<td>160</td>
<td>50</td>
</tr>
<tr>
<td>AE</td>
<td>30S423AE*</td>
<td>159</td>
<td>50</td>
</tr>
<tr>
<td>AF</td>
<td>30S423AF*</td>
<td>156</td>
<td>44</td>
</tr>
<tr>
<td>AG</td>
<td>30S423AG*</td>
<td>129</td>
<td>42</td>
</tr>
</tbody>
</table>
For the GH100 input spline set, contact us.

The part numbers attached with * at the end are our revised numbers.
These are subject to change without advance notice.
The shape of the part shown here is only a representation.
For this reason, the actual shape may differ from the drawing shown here.

GH40

<table>
<thead>
<tr>
<th>Model</th>
<th>Code</th>
<th>Parts No.</th>
<th>Input Spline Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>OB</td>
</tr>
<tr>
<td>F</td>
<td>40S423F*</td>
<td>176</td>
<td>45</td>
</tr>
<tr>
<td>G</td>
<td>40S423G*</td>
<td>194</td>
<td>50</td>
</tr>
<tr>
<td>L</td>
<td>40S423L*</td>
<td>225</td>
<td>60</td>
</tr>
<tr>
<td>P</td>
<td>40S423P*</td>
<td>169</td>
<td>45</td>
</tr>
<tr>
<td>R</td>
<td>40S423R*</td>
<td>169</td>
<td>45</td>
</tr>
<tr>
<td>T</td>
<td>40S423T*</td>
<td>225</td>
<td>75</td>
</tr>
<tr>
<td>Y</td>
<td>40S423Y*</td>
<td>187</td>
<td>50</td>
</tr>
<tr>
<td>AA</td>
<td>40S423AA*</td>
<td>173</td>
<td>45</td>
</tr>
<tr>
<td>AB</td>
<td>40S423AB*</td>
<td>172</td>
<td>50</td>
</tr>
<tr>
<td>AC</td>
<td>40S423AC*</td>
<td>176</td>
<td>50</td>
</tr>
<tr>
<td>AE</td>
<td>40S423AE*</td>
<td>173</td>
<td>50</td>
</tr>
<tr>
<td>AG</td>
<td>40S423AG*</td>
<td>172</td>
<td>50</td>
</tr>
<tr>
<td>AJ</td>
<td>40S423AJ*</td>
<td>194</td>
<td>50</td>
</tr>
<tr>
<td>AK</td>
<td>40S423AK*</td>
<td>200</td>
<td>60</td>
</tr>
</tbody>
</table>

For straight shaft with key (with draw bolt)

![Diagram of straight shaft with key and draw bolt]

<table>
<thead>
<tr>
<th>Model</th>
<th>Code</th>
<th>Parts No.</th>
<th>Input Spline Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>OB</td>
</tr>
<tr>
<td>GH7</td>
<td>E</td>
<td>10S423E*</td>
<td>124</td>
</tr>
<tr>
<td>F</td>
<td>10S423F*</td>
<td>94</td>
<td>28</td>
</tr>
<tr>
<td>AG</td>
<td>10S423AG*</td>
<td>94</td>
<td>28</td>
</tr>
<tr>
<td>GH17</td>
<td>D</td>
<td>20S423D*</td>
<td>136</td>
</tr>
<tr>
<td>J</td>
<td>20S423J*</td>
<td>136</td>
<td>38</td>
</tr>
<tr>
<td>AH</td>
<td>20S423AH*</td>
<td>125.5</td>
<td>35</td>
</tr>
<tr>
<td>AJ</td>
<td>20S423AJ*</td>
<td>123</td>
<td>38</td>
</tr>
<tr>
<td>GH24</td>
<td>P</td>
<td>30S423P*</td>
<td>147.5</td>
</tr>
<tr>
<td>GH40</td>
<td>J</td>
<td>40S423J*</td>
<td>165.5</td>
</tr>
</tbody>
</table>
The part numbers attached with * at the end are our revised numbers. These are subject to change without advance notice. The shape of the part shown here is only a representation. For this reason, the actual shape may differ from the drawing shown here.

<table>
<thead>
<tr>
<th>Square type</th>
<th>Model</th>
<th>Code</th>
<th>Parts No.</th>
<th>Motor Flange Dimension (mm)</th>
<th>Reduction Gear Mounting Dimension (mm)</th>
<th>Motor Mounting Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OA</td>
<td>B</td>
</tr>
<tr>
<td>Square type</td>
<td>GH7</td>
<td>A</td>
<td>10S203A*</td>
<td>165 130 35 30 72</td>
<td>80 h7 0.035 95 9 14 10</td>
<td>110 H7 0.035 11 145 M8 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>10S203B*</td>
<td>215 165 35 30 72</td>
<td>80 h7 0.035 95 9 14 10</td>
<td>150 H7 0.040 10 185 M10 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>10S203C*</td>
<td>190 150 35 30 72</td>
<td>80 h7 0.035 95 9 14 9</td>
<td>130 H7 0.040 10 165 M10 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>10S203E*</td>
<td>155 120 35 30 72</td>
<td>80 h7 0.035 95 9 14 9</td>
<td>110 H7 0.040 10 130 M8 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>10S203F*</td>
<td>165 130 55 50 72</td>
<td>80 h7 0.035 95 9 14 10</td>
<td>110 H7 0.035 11 145 M8 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>10S203K*</td>
<td>230 180 55 50 72</td>
<td>80 h7 0.035 95 9 14 10</td>
<td>114.3 H7 0.035 12 200 M12 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>10S203L*</td>
<td>230 180 70 65 72</td>
<td>80 h7 0.035 95 9 14 10</td>
<td>114.3 H7 0.035 12 200 M12 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>10S203M*</td>
<td>190 150 55 50 72</td>
<td>80 h7 0.035 95 9 14 10</td>
<td>114.3 H7 0.035 12 200 M12 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>10S203P*</td>
<td>230 180 55 50 72</td>
<td>80 h7 0.035 95 9 14 10</td>
<td>114.3 H7 0.035 12 200 M12 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
<td>10S203W*</td>
<td>190 150 35 30 72</td>
<td>80 h7 0.035 95 9 14 9</td>
<td>115 H7 0.035 11 165 M8 -</td>
</tr>
<tr>
<td></td>
<td>GH17</td>
<td>C</td>
<td>20S203C*</td>
<td>230 180 25 20 100</td>
<td>110 h7 0.035 145 9 14 10</td>
<td>114.3 H7 0.035 12 200 M12 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>20S203D*</td>
<td>230 180 65 60 100</td>
<td>110 h7 0.035 145 9 14 10</td>
<td>114.3 H7 0.035 12 200 M12 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>20S203E*</td>
<td>270 220 55 70 100</td>
<td>110 h7 0.035 145 9 14 10</td>
<td>200 H7 0.046 7 235 M12 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
<td>20S203G*</td>
<td>270 220 65 60 100</td>
<td>110 h7 0.035 145 9 14 10</td>
<td>200 H7 0.046 7 235 M12 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>20S203H*</td>
<td>270 220 45 40 100</td>
<td>110 h7 0.035 145 9 14 10</td>
<td>200 H7 0.046 7 235 M12 -</td>
</tr>
<tr>
<td></td>
<td>GH24</td>
<td>B</td>
<td>30S203B*</td>
<td>165 130 46 41 100</td>
<td>110 h7 0.035 145 9 14 8</td>
<td>110 H7 0.035 11 145 M8 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>40S203A*</td>
<td>250 200 30 25 100</td>
<td>114.3 h7 0.035 150 13.5 20</td>
<td>180 H7 0.040 5 215 M12 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>40S203B*</td>
<td>270 220 30 25 100</td>
<td>114.3 h7 0.035 150 13.5 20</td>
<td>200 H7 0.046 7 235 M12 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>40S203C*</td>
<td>270 220 48 43 100</td>
<td>114.3 h7 0.035 150 13.5 20</td>
<td>230 H7 0.046 7 265 M12 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>40S203D*</td>
<td>300 250 30 25 100</td>
<td>114.3 h7 0.035 150 13.5 20</td>
<td>200 H7 0.046 7 250 M8 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>40S203K*</td>
<td>270 220 95 90 100</td>
<td>114.3 h7 0.035 150 13.5 20</td>
<td>200 H7 0.046 7 250 M8 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>40S203L*</td>
<td>250 200 64 59 100</td>
<td>114.3 h7 0.035 150 13.5 20</td>
<td>180 H7 0.046 5 125 M12 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>40S203N*</td>
<td>330 265 117 112 100</td>
<td>114.3 h7 0.035 150 13.5 20</td>
<td>250 H7 0.034 5 300 M16 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>40S203X*</td>
<td>250 200 30 25 100</td>
<td>114.3 h7 0.035 150 13.5 20</td>
<td>180 H7 0.040 7 215 M14 -</td>
</tr>
</tbody>
</table>

Square type (30S)
Combination with Non-standard Product

For the combination with a nonstandard product, use a semi-processed product (for the GH100, however, a semi-processed product is not available).

The parts numbers attached with at the end are our revised numbers.
These are subject to change without advance notice.

1. Input spline blank

For Y1 taper shaft or straight shaft with key

<table>
<thead>
<tr>
<th>Model</th>
<th>Code</th>
<th>Parts No.</th>
<th>Input Spline Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ØD</td>
<td>ØDA</td>
</tr>
<tr>
<td>GH7</td>
<td>Y1</td>
<td>32</td>
<td>4.5</td>
</tr>
<tr>
<td>GH24</td>
<td>Y1</td>
<td>42</td>
<td>6.6</td>
</tr>
<tr>
<td>GH40</td>
<td>Y1</td>
<td>50</td>
<td>11</td>
</tr>
</tbody>
</table>

Modify this part according to the dimension indicated in ().
During the modification work, make a plunge cut.

For Y2 straight shaft without key

<table>
<thead>
<tr>
<th>Model</th>
<th>Code</th>
<th>Parts No.</th>
<th>Input Spline Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ØD</td>
<td>ØDA</td>
</tr>
<tr>
<td>GH17</td>
<td>Y1</td>
<td>38.2</td>
<td>6.6</td>
</tr>
</tbody>
</table>

Modify this part according to the dimension indicated in ().
During the modification work, make a plunge cut.
2. Manufacturing of input spline

If a semi-processed input spline product is also not available, manufacture the correct input spline according to the following dimensions.

*Spline specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Code</th>
<th>Parts No.</th>
<th>Input Spline Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH7</td>
<td>Y1</td>
<td>10S240-∞</td>
<td>OA 70 OB 80 OC 80 h7 0.030</td>
</tr>
<tr>
<td>GH17</td>
<td>Y1</td>
<td>20S240-∞</td>
<td>170 70 110 70 h7 0.036</td>
</tr>
<tr>
<td>GH40</td>
<td>Y1</td>
<td>40S240-∞</td>
<td>230 100 114.3 h7 0.035</td>
</tr>
</tbody>
</table>

* In the designing process, determine the hole size for the motor flange mounting bolt in reference to the external dimension drawing of reduction gear.

3. Motor flange blank (external dimension drawing)

When you use the following semi-processed product, while the standard product is not available, order motor flange code “Y1”.

When determining the motor flange length (thickness), take the input spline dimension and the input spline insertion amount in the reduction gear into consideration (refer to page 15).

Material: SCM415 HNR
Surface finishing: Carburizing and quenching
Surface hardness: Hrc58 to 62
Applicable depth of quench-hardened case: 0.3 to 0.7 mm (Hv513)
1. Input spline motor shaft hole design

Reference for the motor shaft edge contact
(Recommended by Nabtesco Corporation)

The input gear reference mounting position is “A”, which is the edge of the motor shaft. (There is a clearance between the edge of the motor shaft base and the end face of the input gear.)

1) Tolerance of key width and height

There are various different diameters of the motor shaft. For each shaft diameter, we define the tolerance of key width and key height as follows.

The tolerance of key width should be in compliance with “Js9” (JIS ordinary class).
The tolerance of key height should be “0” to “+0.2”.

* The tolerance of key height defined by JIS is “0” to “+0.1”. However, with consideration given to the tilt of the slotter tool for the keyway, we define the dimensional tolerance as above.

2) Study of wall thickness between keyway and hub outside diameter

We define the wall thickness “t” between the shaft hole diameter and the outside diameter as shown on the right.

Wall thickness “t” ≥ 3
(based on our past results)

* If the wall thickness is below “t” defined here, the hardness of the core increases during quenching (carburizing), causing the core to be less likely bent or twisted, which will require a masking process. In addition, it could also cause a swell or tilt of keyway toward the shaft, invalidating the symmetry feature of keyway width.

3) Relief hole for processing keyway

When processing a keyway, a relief hole for chippings will be required.
We define the diameter of the relief hole (drilled hole) as follows.

Drilled hole (Ød) = k + 2 mm

* The above dimension is determined with consideration given to the tolerance of core misalignment during drilling.

4) Relief hole for shaft hole polishing and its width

For accuracy of gear and centering of the shaft hole diameter, the hole is polished. At this point, be sure to leave a relief width (polish 0.1 to 0.3 mm along the radius) at the back of the shaft hole.

We define the relief width “b” as follows:

<table>
<thead>
<tr>
<th>Shaft diameter (Ød)</th>
<th>Relief width (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ød < 25 mm</td>
<td>5 mm</td>
</tr>
<tr>
<td>Ød ≥ 25 mm</td>
<td>7 mm</td>
</tr>
</tbody>
</table>
5) Attachment to the servomotor

The following is a representative case for connecting an input spline to the servomotor shaft.

(1) For straight type (without key)

(2) For straight type (with key)

(3) For straight type (stud bolt with key)

(4) For 1/10 taper

* Adjust the deviation of “A” at the edge of the input spline to 70 μm or less against “B” on the motor mounting pilot diameter.
2. Installation of the reduction gear and mounting it to the output shaft

When installing a reduction gear and mounting it to the output shaft, use hexagon socket head cap screws and tighten to the torque, as specified below, in order to satisfy the momentary maximum allowable torque, which is noted in the rating table. Employment of the Belleville spring washer is recommended to prevent the bolt from loosening and protect the bolt cross section from flaws.

1) Bolt tightening torque and tightening force

<table>
<thead>
<tr>
<th>Hexagon socket head cap screw</th>
<th>Tightening torque (N-m)</th>
<th>Tightening force F (N)</th>
<th>Bolt specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5 x 0.8</td>
<td>9.01 ± 0.49</td>
<td>9310</td>
<td>Hexagon socket head cap screw JIS B 1176 or Equivalent</td>
</tr>
<tr>
<td>M6 x 1.0</td>
<td>15.6 ± 0.78</td>
<td>13180</td>
<td>Strength class JIS B 1051 12.9 or Equivalent</td>
</tr>
<tr>
<td>M8 x 1.25</td>
<td>37.2 ± 1.86</td>
<td>23960</td>
<td>Thread JIS B 0205 6 g or class 2 or Equivalent</td>
</tr>
<tr>
<td>M10 x 1.5</td>
<td>73.5 ± 3.43</td>
<td>38080</td>
<td></td>
</tr>
<tr>
<td>M12 x 1.75</td>
<td>128.4 ± 6.37</td>
<td>55100</td>
<td></td>
</tr>
<tr>
<td>M14 x 2.0</td>
<td>204.8 ± 10.2</td>
<td>75860</td>
<td></td>
</tr>
<tr>
<td>M16 x 2.0</td>
<td>318.5 ± 15.9</td>
<td>103410</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. The tightening torque values listed are for steel or cast iron material.
 2. If softer material, such as aluminum or stainless, is used, limit the tightening torque. Also pay attention to the system requirements of the transmission torque.

2) Calculation of allowable transmission torque of bolts

\[T = F \times \frac{D \times 10^{-3}}{2} \times \mu \times n \]

- \(T \): Allowable transmission torque by tightening bolt (N-m)
- \(F \): Bolt tightening force (N)
- \(D \): Bolt mounting P.C.D (mm)
- \(\mu \): Friction factor
 - \(\mu = 0.15 \): When grease remains on the mating face.
 - \(\mu = 0.20 \): When grease is removed from the mating face.
- \(n \): Number of bolts (pcs.)

3) Serrated lock washer External teeth for hexagonal socket bolt

TS Corporation symbol: Bell-SW-2H (nominal size)
Material: Steel
Hardness: HRC 40 to 48

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>ID and OD of Belleville spring washer</th>
<th>t</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d Basic size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.25</td>
<td>0.6</td>
<td>0.85</td>
</tr>
<tr>
<td>6</td>
<td>6.4</td>
<td>1.0</td>
<td>1.25</td>
</tr>
<tr>
<td>8</td>
<td>8.4</td>
<td>1.2</td>
<td>1.55</td>
</tr>
<tr>
<td>10</td>
<td>10.6</td>
<td>1.5</td>
<td>1.9</td>
</tr>
<tr>
<td>12</td>
<td>12.6</td>
<td>1.8</td>
<td>2.2</td>
</tr>
<tr>
<td>14</td>
<td>14.6</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>16</td>
<td>16.9</td>
<td>2.3</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Note: When using any equivalent washer, select it with special care given to its outside diameter.
3. Lubrication

The standard lubrication method for the GH reduction gear is greasing. Before shipping the reduction gear, grease recommended by Nabtesco Corporation (Molywhite RE NO 00) is filled into the product. When a reduction gear filled with the appropriate amount of grease is operated, the standard replacement time due to grease deterioration is 20,000 hours. When using the gear with deteriorated grease or under an inappropriate ambient temperature condition (40°C or more), check the deterioration condition of the grease and determine the appropriate replacement cycle.

Specified grease name

<table>
<thead>
<tr>
<th>Grease name</th>
<th>Molywhite RE00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Nabtesco Corporation</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-10 to 40°C</td>
</tr>
</tbody>
</table>
Appendix

1. Table of SI units .. 30
2. Kgf to N conversion table 32
3. Inch-millimeter conversion table 33
4. Industrial material property table 34
5. Inertia moment formula 35
6. Basic tolerance .. 36
 1) Dimensional tolerance for shafts 36
 2) Dimensional tolerance for housing bore 38
7. Diameter of clearance holes and counterbores for bolts and screws ... 40
8. Size of hexagon socket head cap screw 41
9. Parallel keys and keyways 42
1. Table of SI units

1) Comparison of SI, CGS, and gravity units

<table>
<thead>
<tr>
<th>Quantity Unit System</th>
<th>Length L</th>
<th>Mass M</th>
<th>Time T</th>
<th>Acceleration</th>
<th>Force</th>
<th>Stress</th>
<th>Pressure</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>m</td>
<td>kg</td>
<td>s</td>
<td>m/s²</td>
<td>N</td>
<td>Pa</td>
<td>Pa</td>
<td>J</td>
</tr>
<tr>
<td>CGS System</td>
<td>cm</td>
<td>g</td>
<td>s</td>
<td>Gal</td>
<td>dyn</td>
<td>dyn/cm²</td>
<td>dyn/cm²</td>
<td>erg</td>
</tr>
<tr>
<td>Gravitation System</td>
<td>m</td>
<td>kgf ⋅ s²/m</td>
<td>s</td>
<td>m/s²</td>
<td>kgf</td>
<td>kgf/cm²</td>
<td>kgf/m²</td>
<td>kgf ⋅ m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity Unit System</th>
<th>Power Rate</th>
<th>Temperature</th>
<th>Viscosity</th>
<th>Dynamic Viscosity</th>
<th>Magnetic Flux</th>
<th>Flux Density</th>
<th>Magnetic Field Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>W</td>
<td>K</td>
<td>Pa ⋅ s</td>
<td>m²/s</td>
<td>Wb</td>
<td>T</td>
<td>A/m</td>
</tr>
<tr>
<td>CGS System</td>
<td>erg/s</td>
<td>°C</td>
<td>P</td>
<td>St</td>
<td>Mx</td>
<td>Gs</td>
<td>Oe</td>
</tr>
<tr>
<td>Gravitation System</td>
<td>kgf ⋅ m/s</td>
<td>°C</td>
<td>kgf ⋅ s/m²</td>
<td>m²/s</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

2) Basic unit prefix (JIS Z 8203)

<table>
<thead>
<tr>
<th>Multiples of Unit</th>
<th>Prefix</th>
<th>Multiples of Unit</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻¹⁸</td>
<td>Exa</td>
<td>10⁻¹⁸</td>
<td>Deci</td>
</tr>
<tr>
<td>10⁻¹⁵</td>
<td>Peta</td>
<td>10⁻¹²</td>
<td>Centi</td>
</tr>
<tr>
<td>10⁻¹²</td>
<td>Tera</td>
<td>10⁻⁹</td>
<td>Milli</td>
</tr>
<tr>
<td>10⁻⁹</td>
<td>Giga</td>
<td>10⁻⁶</td>
<td>Micro</td>
</tr>
<tr>
<td>10⁻⁶</td>
<td>Mega</td>
<td>10⁻³</td>
<td>Nano</td>
</tr>
<tr>
<td>10⁻³</td>
<td>Kilo</td>
<td>10⁻¹²</td>
<td>Pico</td>
</tr>
<tr>
<td>10⁻¹²</td>
<td>Hecto</td>
<td>10⁻¹⁵</td>
<td>Femto</td>
</tr>
<tr>
<td>10⁻¹⁵</td>
<td>Deca</td>
<td>10⁻¹⁸</td>
<td>Ato</td>
</tr>
</tbody>
</table>
3) SI-customary unit conversion table

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit Designation</th>
<th>Symbol</th>
<th>Conversion Rate to SI</th>
<th>Name of SI Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane Angle</td>
<td>Degree</td>
<td>°</td>
<td>$\pi/180$</td>
<td>Radiant</td>
<td>rad</td>
</tr>
<tr>
<td></td>
<td>Minute</td>
<td>'</td>
<td>$\pi/10 800$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>"(sec)</td>
<td>$\pi/648 000$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>Meter</td>
<td>m</td>
<td>1</td>
<td>Meter</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>Micron</td>
<td>μ</td>
<td>10^{-6}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angstrom</td>
<td>Å</td>
<td>10^{-10}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>Square meter</td>
<td>m²</td>
<td>1</td>
<td>Square meter</td>
<td>m²</td>
</tr>
<tr>
<td></td>
<td>Are</td>
<td>a</td>
<td>10^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hectare</td>
<td>ha</td>
<td>10^4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>Cubic meter</td>
<td>m³</td>
<td>10^{-3}</td>
<td>Cubic meter</td>
<td>m³</td>
</tr>
<tr>
<td>Mass</td>
<td>Kilogram</td>
<td>kg</td>
<td>1</td>
<td>Kilogram</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>Ton</td>
<td>t</td>
<td>10^9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kilogram force / square per meter</td>
<td>kgf · s²/m</td>
<td>9.806 65</td>
<td>Kilogram per square meter</td>
<td>kgf/m²</td>
</tr>
<tr>
<td>Time</td>
<td>Second</td>
<td>s</td>
<td>1</td>
<td>Second</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td>Minute</td>
<td>min</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hour</td>
<td>h</td>
<td>3 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Day</td>
<td>d</td>
<td>86 400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>Meters per second</td>
<td>m/s</td>
<td>1</td>
<td>Meters per second</td>
<td>m/s</td>
</tr>
<tr>
<td></td>
<td>Knot</td>
<td>kn</td>
<td>1 852/3 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency and Vibration</td>
<td>Cycle</td>
<td>s (pps)</td>
<td>1</td>
<td>Hertz</td>
<td>Hz</td>
</tr>
<tr>
<td>Resolution (optical speed)</td>
<td>Revolutions per minute (rpm)</td>
<td>r.p.m.(r/min)</td>
<td>1/60</td>
<td>Per second</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>Angular Speed</td>
<td>Radians per second</td>
<td>rad/s</td>
<td>1</td>
<td>Radians per second</td>
<td>rad/s</td>
</tr>
<tr>
<td>Acceleration</td>
<td>Meters per second</td>
<td>m/s²</td>
<td>9.806 65</td>
<td>Meters per second</td>
<td>m²/s</td>
</tr>
<tr>
<td>Force</td>
<td>Kilogram force</td>
<td>kgf</td>
<td>9.806 65</td>
<td>Newton</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Ton force</td>
<td>tf</td>
<td>9.806 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dyne</td>
<td>dyn</td>
<td>2.647 79 x 10⁹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force Moment</td>
<td>Kilogram force / meter</td>
<td>kgf · m</td>
<td>9.806 65</td>
<td>Newton meter</td>
<td>N · m</td>
</tr>
<tr>
<td>Inertia Moment</td>
<td>Kilogram force / meter / square second</td>
<td>kgf · m² · s⁻²</td>
<td>9.806 65</td>
<td>Kilogram / square meter</td>
<td>kg · m⁻²</td>
</tr>
<tr>
<td>Stress</td>
<td>Kilogram force / square meter</td>
<td>kgf/m²</td>
<td>9.806 65</td>
<td>Pascal or Newton per square meter</td>
<td>Pa or N/m²</td>
</tr>
<tr>
<td>Pressure</td>
<td>Kilogram force / square meter</td>
<td>kgf/m²</td>
<td>9.806 65</td>
<td>Pascal</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td>Meter water column</td>
<td>mH₂O</td>
<td>9.806 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meter of mercury</td>
<td>mHg</td>
<td>101 325/0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Torr</td>
<td>Torr</td>
<td>101 325/760</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atmosphere</td>
<td>atm</td>
<td>101 325</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bar</td>
<td>bar</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>Erg</td>
<td>erg</td>
<td>10⁷</td>
<td>Joule</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>IT calorie</td>
<td>cal⁻¹</td>
<td>4.186 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kilogram force / meter</td>
<td>kgf · m</td>
<td>9.806 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kilowatt hour</td>
<td>kWh</td>
<td>3.600 x 10⁶</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metric horsepower per hour</td>
<td>kW · h</td>
<td>2.647 79 x 10⁹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Rate and Power</td>
<td>Watt</td>
<td>W</td>
<td>1</td>
<td>Watt</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>Metric horsepower</td>
<td>PS</td>
<td>735.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity</td>
<td>Poise</td>
<td>P</td>
<td>10^{-3}</td>
<td>Pascal second</td>
<td>Pa · s</td>
</tr>
<tr>
<td></td>
<td>Centipoise</td>
<td>cP</td>
<td>10^{-6}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kilogram force / square per meter</td>
<td>kgf · s⁻²/m²</td>
<td>9.806 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Viscosity</td>
<td>Stoke</td>
<td>St</td>
<td>10^{-1}</td>
<td>Square meter per second</td>
<td>m²/s</td>
</tr>
<tr>
<td></td>
<td>Centistoke</td>
<td>cSt</td>
<td>10^{-4}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Degree</td>
<td>°C</td>
<td>+273.15</td>
<td>Kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Radioactive</td>
<td>Curie</td>
<td>Ci</td>
<td>3.7×10^{10}</td>
<td>Becquerel</td>
<td>Bq</td>
</tr>
<tr>
<td>Dosage</td>
<td>Roentgen</td>
<td>R</td>
<td>2.58×10^{10}</td>
<td>Coulombs per kilogram</td>
<td>C/kg</td>
</tr>
<tr>
<td>Absorption Dosage</td>
<td>Rad</td>
<td>rad</td>
<td>10^4</td>
<td>Gray</td>
<td>Gy</td>
</tr>
<tr>
<td>Dosage Equivalent</td>
<td>Rem</td>
<td>rem</td>
<td>10^6</td>
<td>Sievert</td>
<td>Sv</td>
</tr>
<tr>
<td>Magnetic flux</td>
<td>Maxwell</td>
<td>Mx</td>
<td>10^8</td>
<td>Weber</td>
<td>Wb</td>
</tr>
<tr>
<td>Flux density</td>
<td>Gamma</td>
<td>γ</td>
<td>10^7</td>
<td>Tesla</td>
<td>T</td>
</tr>
<tr>
<td>Magnetic Field Strength</td>
<td>Oersted</td>
<td>Oe</td>
<td>$10^4 \pi$</td>
<td>Amperes per meter</td>
<td>A/m</td>
</tr>
<tr>
<td>Quantity of Electricity</td>
<td>Coulomb</td>
<td>C</td>
<td>1</td>
<td>Coulomb</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Volt</td>
<td>V</td>
<td>1</td>
<td>Volt</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Ohm</td>
<td>Ω</td>
<td>1</td>
<td>Ohm</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>Ampere</td>
<td>A</td>
<td>1</td>
<td>Ampere</td>
<td>A</td>
</tr>
</tbody>
</table>
2. Kgf to N conversion table

<table>
<thead>
<tr>
<th>kgf</th>
<th>N</th>
<th>kgf</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.101972</td>
<td>1.900655</td>
<td>5.2006</td>
<td>50.139</td>
</tr>
<tr>
<td>0.2039</td>
<td>19.613</td>
<td>5.3025</td>
<td>50.946</td>
</tr>
<tr>
<td>0.3059</td>
<td>29.420</td>
<td>5.4045</td>
<td>51.975</td>
</tr>
<tr>
<td>0.4079</td>
<td>39.227</td>
<td>5.5065</td>
<td>52.959</td>
</tr>
<tr>
<td>0.5099</td>
<td>49.033</td>
<td>5.6084</td>
<td>53.936</td>
</tr>
<tr>
<td>0.6118</td>
<td>58.840</td>
<td>5.7104</td>
<td>54.912</td>
</tr>
<tr>
<td>0.7138</td>
<td>68.647</td>
<td>5.8124</td>
<td>55.897</td>
</tr>
<tr>
<td>0.8158</td>
<td>78.453</td>
<td>5.9144</td>
<td>56.876</td>
</tr>
<tr>
<td>0.9177</td>
<td>88.260</td>
<td>6.0163</td>
<td>57.859</td>
</tr>
<tr>
<td>1.0197</td>
<td>98.067</td>
<td>6.1183</td>
<td>58.839</td>
</tr>
<tr>
<td>1.1217</td>
<td>107.873</td>
<td>6.2203</td>
<td>59.868</td>
</tr>
<tr>
<td>1.2237</td>
<td>117.680</td>
<td>6.3222</td>
<td>60.801</td>
</tr>
<tr>
<td>1.3256</td>
<td>127.486</td>
<td>6.4242</td>
<td>61.719</td>
</tr>
<tr>
<td>1.4276</td>
<td>137.293</td>
<td>6.5262</td>
<td>62.626</td>
</tr>
<tr>
<td>1.5296</td>
<td>147.100</td>
<td>6.6282</td>
<td>63.533</td>
</tr>
<tr>
<td>1.6315</td>
<td>156.906</td>
<td>6.7301</td>
<td>64.439</td>
</tr>
<tr>
<td>1.7335</td>
<td>166.713</td>
<td>6.8321</td>
<td>65.346</td>
</tr>
<tr>
<td>1.8355</td>
<td>176.520</td>
<td>6.9341</td>
<td>66.253</td>
</tr>
<tr>
<td>1.9375</td>
<td>186.326</td>
<td>7.0360</td>
<td>67.160</td>
</tr>
<tr>
<td>2.0394</td>
<td>196.133</td>
<td>7.1380</td>
<td>68.066</td>
</tr>
<tr>
<td>2.1414</td>
<td>205.940</td>
<td>7.2400</td>
<td>69.972</td>
</tr>
<tr>
<td>2.2434</td>
<td>215.746</td>
<td>7.3420</td>
<td>70.879</td>
</tr>
<tr>
<td>2.3453</td>
<td>225.553</td>
<td>7.4439</td>
<td>71.785</td>
</tr>
<tr>
<td>2.4473</td>
<td>235.360</td>
<td>7.5459</td>
<td>72.692</td>
</tr>
<tr>
<td>2.5493</td>
<td>245.166</td>
<td>7.6479</td>
<td>73.599</td>
</tr>
<tr>
<td>2.6513</td>
<td>254.973</td>
<td>7.7498</td>
<td>74.505</td>
</tr>
<tr>
<td>2.7532</td>
<td>264.780</td>
<td>7.8518</td>
<td>75.412</td>
</tr>
<tr>
<td>2.8552</td>
<td>274.586</td>
<td>7.9538</td>
<td>76.319</td>
</tr>
<tr>
<td>2.9572</td>
<td>284.393</td>
<td>8.0558</td>
<td>77.225</td>
</tr>
<tr>
<td>3.0591</td>
<td>294.200</td>
<td>8.1577</td>
<td>78.131</td>
</tr>
<tr>
<td>3.1611</td>
<td>304.006</td>
<td>8.2597</td>
<td>79.037</td>
</tr>
<tr>
<td>3.2631</td>
<td>313.813</td>
<td>8.3617</td>
<td>80.044</td>
</tr>
<tr>
<td>3.3651</td>
<td>323.619</td>
<td>8.4636</td>
<td>81.051</td>
</tr>
<tr>
<td>3.4671</td>
<td>333.426</td>
<td>8.5656</td>
<td>82.058</td>
</tr>
<tr>
<td>3.5690</td>
<td>343.233</td>
<td>8.6676</td>
<td>83.065</td>
</tr>
<tr>
<td>3.6710</td>
<td>353.039</td>
<td>8.7696</td>
<td>84.072</td>
</tr>
<tr>
<td>3.7729</td>
<td>362.846</td>
<td>8.8715</td>
<td>85.079</td>
</tr>
<tr>
<td>3.8749</td>
<td>372.653</td>
<td>8.9735</td>
<td>86.086</td>
</tr>
<tr>
<td>3.9769</td>
<td>382.459</td>
<td>9.0755</td>
<td>87.093</td>
</tr>
<tr>
<td>4.0789</td>
<td>392.266</td>
<td>9.1774</td>
<td>88.099</td>
</tr>
<tr>
<td>4.1808</td>
<td>402.073</td>
<td>9.2794</td>
<td>89.095</td>
</tr>
<tr>
<td>4.2828</td>
<td>411.879</td>
<td>9.3814</td>
<td>90.092</td>
</tr>
<tr>
<td>4.3848</td>
<td>421.686</td>
<td>9.4834</td>
<td>91.089</td>
</tr>
<tr>
<td>4.4868</td>
<td>431.493</td>
<td>9.5853</td>
<td>92.086</td>
</tr>
<tr>
<td>4.5887</td>
<td>441.299</td>
<td>9.6873</td>
<td>93.083</td>
</tr>
<tr>
<td>4.6907</td>
<td>451.106</td>
<td>9.7893</td>
<td>94.080</td>
</tr>
<tr>
<td>4.7927</td>
<td>460.913</td>
<td>9.8912</td>
<td>95.076</td>
</tr>
<tr>
<td>4.8946</td>
<td>470.719</td>
<td>9.9932</td>
<td>96.073</td>
</tr>
<tr>
<td>4.9966</td>
<td>480.526</td>
<td>10.0952</td>
<td>97.070</td>
</tr>
<tr>
<td>5.0986</td>
<td>490.333</td>
<td>10.1972</td>
<td>98.066</td>
</tr>
</tbody>
</table>

[How to read the table]
If for example you want to convert 10 kgf to N, find “10” in the middle column of the first set of columns on the right.
Look in the N column directly to the right of “10”, and you will see that 10 kgf equals 98.066 N. Oppositely, to convert 10 N to kgf, look in the kgf column to the right of “10” and you will see that 10 N equals 1.0197 kgf.
3. Inch-millimeter conversion table

<table>
<thead>
<tr>
<th>Inch</th>
<th>Decimal</th>
<th>0"</th>
<th>1"</th>
<th>2"</th>
<th>3"</th>
<th>4"</th>
<th>5"</th>
<th>6"</th>
<th>7"</th>
<th>8"</th>
<th>9"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/64</td>
<td>0.015625</td>
<td>25.400</td>
<td>50.800</td>
<td>76.200</td>
<td>101.600</td>
<td>127.000</td>
<td>152.400</td>
<td>177.800</td>
<td>203.200</td>
<td>228.600</td>
<td></td>
</tr>
<tr>
<td>1/32</td>
<td>0.031250</td>
<td>25.797</td>
<td>51.597</td>
<td>76.994</td>
<td>102.394</td>
<td>127.994</td>
<td>153.594</td>
<td>179.194</td>
<td>204.794</td>
<td>230.394</td>
<td></td>
</tr>
<tr>
<td>3/64</td>
<td>0.046875</td>
<td>26.194</td>
<td>51.984</td>
<td>77.988</td>
<td>103.188</td>
<td>128.788</td>
<td>154.388</td>
<td>180.388</td>
<td>205.988</td>
<td>231.588</td>
<td></td>
</tr>
<tr>
<td>1/16</td>
<td>0.062500</td>
<td>26.591</td>
<td>52.388</td>
<td>78.388</td>
<td>103.588</td>
<td>129.188</td>
<td>154.788</td>
<td>180.788</td>
<td>206.388</td>
<td>232.388</td>
<td></td>
</tr>
<tr>
<td>5/64</td>
<td>0.078125</td>
<td>26.988</td>
<td>52.788</td>
<td>78.788</td>
<td>103.888</td>
<td>129.588</td>
<td>155.188</td>
<td>181.188</td>
<td>206.788</td>
<td>233.188</td>
<td></td>
</tr>
<tr>
<td>3/32</td>
<td>0.093750</td>
<td>27.385</td>
<td>53.181</td>
<td>79.181</td>
<td>104.181</td>
<td>130.181</td>
<td>155.581</td>
<td>181.581</td>
<td>207.181</td>
<td>233.581</td>
<td></td>
</tr>
<tr>
<td>7/64</td>
<td>0.109375</td>
<td>27.782</td>
<td>53.578</td>
<td>79.578</td>
<td>104.478</td>
<td>130.578</td>
<td>156.178</td>
<td>181.978</td>
<td>207.578</td>
<td>234.178</td>
<td></td>
</tr>
<tr>
<td>1/8</td>
<td>0.125000</td>
<td>28.178</td>
<td>53.975</td>
<td>79.975</td>
<td>104.775</td>
<td>130.975</td>
<td>156.575</td>
<td>182.375</td>
<td>208.375</td>
<td>234.575</td>
<td></td>
</tr>
<tr>
<td>9/64</td>
<td>0.140625</td>
<td>28.575</td>
<td>54.372</td>
<td>80.372</td>
<td>105.072</td>
<td>131.372</td>
<td>157.172</td>
<td>182.772</td>
<td>208.772</td>
<td>235.172</td>
<td></td>
</tr>
<tr>
<td>5/32</td>
<td>0.156250</td>
<td>28.972</td>
<td>54.769</td>
<td>80.769</td>
<td>105.370</td>
<td>131.769</td>
<td>157.570</td>
<td>183.170</td>
<td>209.170</td>
<td>235.570</td>
<td></td>
</tr>
<tr>
<td>3/16</td>
<td>0.171875</td>
<td>29.369</td>
<td>55.166</td>
<td>81.166</td>
<td>105.666</td>
<td>132.166</td>
<td>157.966</td>
<td>183.566</td>
<td>209.566</td>
<td>236.166</td>
<td></td>
</tr>
<tr>
<td>7/32</td>
<td>0.187500</td>
<td>29.766</td>
<td>55.563</td>
<td>81.563</td>
<td>105.963</td>
<td>132.563</td>
<td>158.363</td>
<td>183.963</td>
<td>210.363</td>
<td>236.563</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>0.203125</td>
<td>30.163</td>
<td>55.960</td>
<td>81.960</td>
<td>106.260</td>
<td>132.960</td>
<td>158.760</td>
<td>184.360</td>
<td>210.760</td>
<td>237.160</td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>0.218750</td>
<td>30.559</td>
<td>56.356</td>
<td>82.356</td>
<td>106.559</td>
<td>133.356</td>
<td>159.156</td>
<td>184.756</td>
<td>211.156</td>
<td>237.556</td>
<td></td>
</tr>
<tr>
<td>7/16</td>
<td>0.234375</td>
<td>30.956</td>
<td>56.753</td>
<td>82.753</td>
<td>106.856</td>
<td>133.753</td>
<td>159.553</td>
<td>185.153</td>
<td>211.553</td>
<td>238.153</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>0.250000</td>
<td>31.353</td>
<td>57.150</td>
<td>83.150</td>
<td>107.150</td>
<td>134.150</td>
<td>160.150</td>
<td>185.550</td>
<td>212.550</td>
<td>238.550</td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>0.303125</td>
<td>33.312</td>
<td>59.150</td>
<td>85.150</td>
<td>110.150</td>
<td>135.150</td>
<td>162.150</td>
<td>188.550</td>
<td>215.550</td>
<td>241.550</td>
<td></td>
</tr>
<tr>
<td>7/8</td>
<td>0.357031</td>
<td>35.222</td>
<td>61.150</td>
<td>87.150</td>
<td>112.150</td>
<td>136.150</td>
<td>164.150</td>
<td>190.550</td>
<td>217.550</td>
<td>243.550</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.406250</td>
<td>36.222</td>
<td>62.150</td>
<td>88.150</td>
<td>113.150</td>
<td>137.150</td>
<td>165.150</td>
<td>191.550</td>
<td>218.550</td>
<td>244.550</td>
<td></td>
</tr>
<tr>
<td>1 1/8</td>
<td>0.453125</td>
<td>37.222</td>
<td>63.150</td>
<td>89.150</td>
<td>114.150</td>
<td>138.150</td>
<td>166.150</td>
<td>192.550</td>
<td>219.550</td>
<td>245.550</td>
<td></td>
</tr>
<tr>
<td>1 1/4</td>
<td>0.500000</td>
<td>38.222</td>
<td>64.150</td>
<td>90.150</td>
<td>115.150</td>
<td>139.150</td>
<td>167.150</td>
<td>193.550</td>
<td>220.550</td>
<td>246.550</td>
<td></td>
</tr>
<tr>
<td>1 5/8</td>
<td>0.557031</td>
<td>39.222</td>
<td>65.150</td>
<td>91.150</td>
<td>116.150</td>
<td>140.150</td>
<td>168.150</td>
<td>194.550</td>
<td>221.550</td>
<td>247.550</td>
<td></td>
</tr>
<tr>
<td>1 3/4</td>
<td>0.606250</td>
<td>40.222</td>
<td>66.150</td>
<td>92.150</td>
<td>117.150</td>
<td>141.150</td>
<td>169.150</td>
<td>195.550</td>
<td>222.550</td>
<td>248.550</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.703125</td>
<td>41.222</td>
<td>67.150</td>
<td>93.150</td>
<td>118.150</td>
<td>142.150</td>
<td>170.150</td>
<td>196.550</td>
<td>223.550</td>
<td>249.550</td>
<td></td>
</tr>
<tr>
<td>2 1/8</td>
<td>0.750000</td>
<td>42.222</td>
<td>68.150</td>
<td>94.150</td>
<td>119.150</td>
<td>143.150</td>
<td>171.150</td>
<td>197.550</td>
<td>224.550</td>
<td>250.550</td>
<td></td>
</tr>
<tr>
<td>2 1/4</td>
<td>0.796875</td>
<td>43.222</td>
<td>69.150</td>
<td>95.150</td>
<td>120.150</td>
<td>144.150</td>
<td>172.150</td>
<td>198.550</td>
<td>225.550</td>
<td>251.550</td>
<td></td>
</tr>
<tr>
<td>2 3/8</td>
<td>0.843750</td>
<td>44.222</td>
<td>70.150</td>
<td>96.150</td>
<td>121.150</td>
<td>145.150</td>
<td>173.150</td>
<td>199.550</td>
<td>226.550</td>
<td>252.550</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.906250</td>
<td>45.222</td>
<td>71.150</td>
<td>97.150</td>
<td>122.150</td>
<td>146.150</td>
<td>174.150</td>
<td>200.550</td>
<td>227.550</td>
<td>253.550</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- The table provides inch-to-millimeter conversions for various inch measurements.
- Each row includes the inch measurement followed by its corresponding decimal and millimeter values.
- The values are shown in a format suitable for metric conversion tables.
- The table includes values up to 1 inch and greater, facilitating a wide range of conversions.

Related:

- **Inch-millimeter conversion table**
- **Metric conversion tables**
- **Dimensional designations**
- **Engineering units**
- **Metric system**
4. Industrial material property table

<table>
<thead>
<tr>
<th>Material</th>
<th>Gravity</th>
<th>Young’s Modulus E (GPa)</th>
<th>Shear Modulus G (GPa)</th>
<th>Coefficient of Thermal Expansion x 10$^{-6}$/°C (20°C)</th>
<th>Tensile Strength (MPa)</th>
<th>Yield Point (MPa)</th>
<th>Elongation (%)</th>
<th>Hardness (HB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild Steel</td>
<td>7.85 to 7.8</td>
<td>206.8</td>
<td>82.3 to 82.5</td>
<td>11.16 to 11.28</td>
<td>490 to 590</td>
<td>274</td>
<td>20</td>
<td>140 to 150</td>
</tr>
<tr>
<td>Dead Soft Steel</td>
<td>7.85 to 7.86</td>
<td>205.8</td>
<td>79.4</td>
<td>11.28 to 11.60</td>
<td>245</td>
<td>108</td>
<td>60</td>
<td>60 to 70</td>
</tr>
<tr>
<td>Hard Steel</td>
<td>7.84 to 7.85</td>
<td>204.8</td>
<td>81.9</td>
<td>10.72 to 10.73</td>
<td>607 to 640</td>
<td>320</td>
<td>19</td>
<td>200</td>
</tr>
<tr>
<td>Blackheart Malleable Iron</td>
<td>7.35</td>
<td>171</td>
<td>85.8</td>
<td>11.55</td>
<td>294 to 392</td>
<td>8</td>
<td>20</td>
<td>109 to 145</td>
</tr>
<tr>
<td>Gray Iron</td>
<td>7.05 to 7.30</td>
<td>73.5 to 127</td>
<td>28.4 to 39.2</td>
<td>9.2 to 11.8</td>
<td>440</td>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nodular Graphite Cast Iron</td>
<td>7.1</td>
<td>150</td>
<td>78.4</td>
<td>10</td>
<td>450 to 680</td>
<td>140 to 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrome Steel</td>
<td>7.84</td>
<td>201 to 211</td>
<td>—</td>
<td>11.2</td>
<td>> 784</td>
<td>15</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Nickel Chrome Steel</td>
<td>7.8</td>
<td>204</td>
<td>—</td>
<td>13.3</td>
<td>> 833</td>
<td>18</td>
<td>248 to 302</td>
<td></td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>7.6 to 7.75</td>
<td>203 to 208</td>
<td>—</td>
<td>11.0</td>
<td>690 to 930</td>
<td>210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>2.7</td>
<td>62</td>
<td>23.9</td>
<td>48 (Soft)</td>
<td>114 (Hard)</td>
<td>49 (Soft)</td>
<td>17 (Soft)</td>
<td>27 (Hard)</td>
</tr>
<tr>
<td>Aluminum Alloy</td>
<td>2.79</td>
<td>68.6</td>
<td>26.5</td>
<td>22.6</td>
<td>480</td>
<td>> 10</td>
<td>75 (Soft)</td>
<td>90 (Hard)</td>
</tr>
<tr>
<td>Super Aluminum Alloy</td>
<td>2.8</td>
<td>73.6</td>
<td>26.0</td>
<td>22.8</td>
<td>569</td>
<td>> 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>8.96</td>
<td>108</td>
<td>57</td>
<td>16.5</td>
<td>225 (Soft)</td>
<td>6 to 45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum Bronze</td>
<td>7.6</td>
<td>110</td>
<td>—</td>
<td>17</td>
<td>617 to 725</td>
<td>411</td>
<td>12 to 25</td>
<td>125 to 160</td>
</tr>
<tr>
<td>Alpha Brass</td>
<td>8.54</td>
<td>108</td>
<td>41</td>
<td>19</td>
<td>323 to 519</td>
<td>10 (Soft)</td>
<td>8 to 62</td>
<td>49 to 80</td>
</tr>
<tr>
<td>Beta Brass</td>
<td>8.39</td>
<td>1.03</td>
<td>38</td>
<td>18.4</td>
<td>372 to 480</td>
<td>10 to 45</td>
<td>10 (Soft)</td>
<td>49 to 80</td>
</tr>
<tr>
<td>Phosphor Bronze</td>
<td>8.78</td>
<td>110</td>
<td>—</td>
<td>18.4</td>
<td>382 to 637</td>
<td>10 to 70</td>
<td>70 (Soft)</td>
<td></td>
</tr>
<tr>
<td>Nickel Brass</td>
<td>8.3 to 8.7</td>
<td>108</td>
<td>39</td>
<td>18 to 21</td>
<td>350 to 590</td>
<td>12 to 46</td>
<td>(Hard)</td>
<td></td>
</tr>
<tr>
<td>Beryllium Copper</td>
<td>8.2</td>
<td>110</td>
<td>—</td>
<td>16.6</td>
<td>490 to 1300</td>
<td>2 to 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polycarbonate</td>
<td>1.2</td>
<td>2.3</td>
<td>62</td>
<td>73</td>
<td>60 to 100</td>
<td>M70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforced Glass Fiber</td>
<td>1.52</td>
<td>8.9</td>
<td>137</td>
<td>1.7</td>
<td>81</td>
<td>60</td>
<td>R118</td>
<td></td>
</tr>
<tr>
<td>Nylon (6-6)</td>
<td>1.13 to 1.15</td>
<td>0.3</td>
<td>81</td>
<td>1 to 6 (Soft)</td>
<td>1 to 6</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxy Resin</td>
<td>1.1 to 2.0</td>
<td>2.45</td>
<td>27</td>
<td>89</td>
<td>1 to 6</td>
<td>M80 to 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Rubber</td>
<td>1.9</td>
<td>0.02 to 0.4</td>
<td>1.5 to 3.4</td>
<td>880</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Inertia moment formula

<table>
<thead>
<tr>
<th>Object Shape</th>
<th>(I) (Inertia Moment), (m) (Mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(I_x = \frac{1}{2} m R^2) \n(I_y = \frac{1}{4} m \left(R^2 + \frac{b^2}{3}\right)) \n(I_z = I_y) \n(m = \pi R^2 \delta \rho)</td>
</tr>
<tr>
<td>2</td>
<td>(I_x = \frac{1}{2} m \left(R^2 + R^2\right)) \n(I_y = \frac{1}{4} m \left(R^2 + R^2 + \frac{b^2}{3}\right)) \n(I_z = I_y) \n(m = \pi \left(R^2 - R^2\right) \delta \rho)</td>
</tr>
<tr>
<td>3</td>
<td>(I_x = \frac{1}{16} m \left(b^2 + c^2\right)) \n(I_y = \frac{1}{4} m \left(\frac{c^2}{4} + \frac{b^2}{3}\right)) \n(I_z = I_y) \n(m = \frac{\pi}{4} \delta b c \rho)</td>
</tr>
<tr>
<td>4</td>
<td>(I_x = \frac{1}{12} m \left(b^2 + c^2\right)) \n(I_y = \frac{1}{12} m \left(a^2 + c^2\right)) \n(I_z = I_y) \n(m = ab c \rho)</td>
</tr>
<tr>
<td>5</td>
<td>(I_x = \frac{1}{24} m \left(b^2 + c^2\right)) \n(I_y = \frac{1}{12} m \left(c^2 + 2a^2\right)) \n(I_z = \frac{1}{24} m \left(b^2 + 2a^2\right)) \n(m = \frac{1}{2} ab c \rho)</td>
</tr>
<tr>
<td>6</td>
<td>(I_x = \frac{1}{12} m \left(\frac{b^2}{2} + \frac{2}{3} c^2\right)) \n(I_y = \frac{1}{12} m (a^2 + \frac{2}{3} c^2)) \n(I_z = \frac{1}{12} m \left(a^2 + \frac{b^2}{2}\right)) \n(m = \frac{1}{2} ab c \rho)</td>
</tr>
<tr>
<td>7</td>
<td>(I_x = \frac{1}{36} m \left(b^2 + c^2\right)) \n(I_y = \frac{1}{12} m \left(a^2 + \frac{2}{3} c^2\right)) \n(I_z = \frac{1}{12} m \left(a^2 + \frac{b^2}{2}\right)) \n(m = \frac{1}{2} ab c \rho)</td>
</tr>
<tr>
<td>8</td>
<td>(I_x = \frac{5}{12} m b^2) \n(I_y = \frac{1}{12} m \left(a^2 + \frac{5}{2} b^2\right)) \n(I_z = I_y) \n(m = \frac{3 \sqrt{3}}{2} ab c \rho)</td>
</tr>
<tr>
<td>9</td>
<td>(I_x = \frac{3}{10} m b^2) \n(I_y = \frac{3}{80} m (4b^2 + a^2)) \n(I_z = I_y) \n(m = \frac{\pi}{3} R^2 \delta a \rho)</td>
</tr>
</tbody>
</table>

10 Parallel axis theorem

\[I = I_o + m \eta^2 \]

- \(I_o \): Inertia moment of the object related to the axis of gravity
- \(I \): Inertia moment of the object related to the axis of rotation that is parallel to the axis of gravity
- \(\eta \): Distance between the axis of rotation and the axis of gravity
6. Basic tolerance

1) Dimensional tolerance for shafts

<table>
<thead>
<tr>
<th>Diameter division (mil)</th>
<th>±13</th>
<th>±12</th>
<th>±6</th>
<th>±6</th>
<th>±13</th>
<th>±6</th>
<th>±6</th>
<th>±5</th>
<th>±6</th>
<th>±6</th>
<th>±6</th>
<th>±6</th>
<th>±6</th>
<th>±6</th>
<th>±6</th>
</tr>
</thead>
<tbody>
<tr>
<td>over 1 of less</td>
<td></td>
</tr>
<tr>
<td>3 6</td>
<td></td>
</tr>
<tr>
<td>6 10</td>
<td></td>
</tr>
<tr>
<td>10 18</td>
<td></td>
</tr>
<tr>
<td>18 30</td>
<td></td>
</tr>
<tr>
<td>30 40</td>
<td></td>
</tr>
<tr>
<td>40 50</td>
<td></td>
</tr>
<tr>
<td>50 65</td>
<td></td>
</tr>
<tr>
<td>65 80</td>
<td></td>
</tr>
<tr>
<td>80 100</td>
<td></td>
</tr>
<tr>
<td>100 120</td>
<td></td>
</tr>
<tr>
<td>120 140</td>
<td></td>
</tr>
<tr>
<td>140 160</td>
<td></td>
</tr>
<tr>
<td>160 180</td>
<td></td>
</tr>
<tr>
<td>180 200</td>
<td></td>
</tr>
<tr>
<td>200 225</td>
<td></td>
</tr>
<tr>
<td>225 250</td>
<td></td>
</tr>
<tr>
<td>250 280</td>
<td></td>
</tr>
<tr>
<td>280 315</td>
<td></td>
</tr>
<tr>
<td>315 355</td>
<td></td>
</tr>
<tr>
<td>355 400</td>
<td></td>
</tr>
<tr>
<td>400 450</td>
<td></td>
</tr>
<tr>
<td>450 500</td>
<td></td>
</tr>
<tr>
<td>500 560</td>
<td></td>
</tr>
<tr>
<td>560 630</td>
<td></td>
</tr>
<tr>
<td>630 710</td>
<td></td>
</tr>
<tr>
<td>710 800</td>
<td></td>
</tr>
<tr>
<td>800 900</td>
<td></td>
</tr>
<tr>
<td>900 1000</td>
<td></td>
</tr>
<tr>
<td>1000 1120</td>
<td></td>
</tr>
<tr>
<td>1120 1250</td>
<td></td>
</tr>
<tr>
<td>1250 1400</td>
<td></td>
</tr>
<tr>
<td>1400 1600</td>
<td></td>
</tr>
</tbody>
</table>

(Units: μm)
Table

<table>
<thead>
<tr>
<th>Unit: µm</th>
<th>b4</th>
<th>h5</th>
<th>b6</th>
<th>h7</th>
<th>b8</th>
<th>h9</th>
<th>h10</th>
<th>h11</th>
<th>h12</th>
<th>h13</th>
<th>j14</th>
<th>Diameter division (mm) over or less</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>–2 –2</td>
</tr>
<tr>
<td>0 –4</td>
<td>0 –5</td>
<td>0 –8</td>
<td>0 –12</td>
<td>0 –18</td>
<td>0 –30</td>
<td>0 –48</td>
<td>0 –75</td>
<td>0 –180</td>
<td>+2</td>
<td>–2</td>
<td>3 6</td>
<td></td>
</tr>
<tr>
<td>0 –4</td>
<td>0 –6</td>
<td>0 –9</td>
<td>0 –15</td>
<td>0 –22</td>
<td>0 –36</td>
<td>0 –58</td>
<td>0 –90</td>
<td>0 –220</td>
<td>+2</td>
<td>–2</td>
<td>6 10</td>
<td></td>
</tr>
<tr>
<td>0 –5</td>
<td>0 –8</td>
<td>0 –11</td>
<td>0 –18</td>
<td>0 –27</td>
<td>0 –43</td>
<td>0 –70</td>
<td>0 –110</td>
<td>0 –270</td>
<td>+2.5</td>
<td>–2.5</td>
<td>10 18</td>
<td></td>
</tr>
<tr>
<td>0 –6</td>
<td>0 –9</td>
<td>0 –13</td>
<td>0 –21</td>
<td>0 –33</td>
<td>0 –52</td>
<td>0 –84</td>
<td>0 –130</td>
<td>0 –330</td>
<td>+3</td>
<td>–3</td>
<td>18 30</td>
<td></td>
</tr>
<tr>
<td>0 –7</td>
<td>0 –11</td>
<td>0 –16</td>
<td>0 –25</td>
<td>0 –39</td>
<td>0 –62</td>
<td>0 –100</td>
<td>0 –160</td>
<td>0 –390</td>
<td>+3.5</td>
<td>–3.5</td>
<td>30 40</td>
<td></td>
</tr>
<tr>
<td>0 –8</td>
<td>0 –13</td>
<td>0 –19</td>
<td>0 –30</td>
<td>0 –46</td>
<td>0 –74</td>
<td>0 –120</td>
<td>0 –190</td>
<td>0 –460</td>
<td>+4</td>
<td>–4</td>
<td>50 65</td>
<td></td>
</tr>
<tr>
<td>0 –10</td>
<td>0 –15</td>
<td>0 –22</td>
<td>0 –35</td>
<td>0 –64</td>
<td>0 –87</td>
<td>0 –140</td>
<td>0 –220</td>
<td>0 –540</td>
<td>+5</td>
<td>–5</td>
<td>80 100</td>
<td></td>
</tr>
<tr>
<td>100 120</td>
<td></td>
</tr>
<tr>
<td>0 –12</td>
<td>0 –18</td>
<td>0 –25</td>
<td>0 –40</td>
<td>0 –63</td>
<td>0 –100</td>
<td>0 –160</td>
<td>0 –250</td>
<td>0 –630</td>
<td>+6</td>
<td>–6</td>
<td>120 140</td>
<td></td>
</tr>
<tr>
<td>140 160</td>
<td></td>
</tr>
<tr>
<td>0 –14</td>
<td>0 –20</td>
<td>0 –29</td>
<td>0 –46</td>
<td>0 –72</td>
<td>0 –115</td>
<td>0 –185</td>
<td>0 –290</td>
<td>0 –720</td>
<td>+7</td>
<td>–7</td>
<td>180 200</td>
<td></td>
</tr>
<tr>
<td>200 225</td>
<td></td>
</tr>
<tr>
<td>0 –16</td>
<td>0 –23</td>
<td>0 –32</td>
<td>0 –52</td>
<td>0 –81</td>
<td>0 –130</td>
<td>0 –210</td>
<td>0 –320</td>
<td>0 –810</td>
<td>+8</td>
<td>–8</td>
<td>250 280</td>
<td></td>
</tr>
<tr>
<td>280 315</td>
<td></td>
</tr>
<tr>
<td>0 –18</td>
<td>0 –25</td>
<td>0 –36</td>
<td>0 –57</td>
<td>0 –89</td>
<td>0 –140</td>
<td>0 –230</td>
<td>0 –360</td>
<td>0 –890</td>
<td>+9</td>
<td>–9</td>
<td>315 355</td>
<td></td>
</tr>
<tr>
<td>355 400</td>
<td></td>
</tr>
<tr>
<td>0 –20</td>
<td>0 –27</td>
<td>0 –40</td>
<td>0 –63</td>
<td>0 –97</td>
<td>0 –155</td>
<td>0 –250</td>
<td>0 –400</td>
<td>0 –970</td>
<td>+10</td>
<td>–10</td>
<td>400 450</td>
<td></td>
</tr>
<tr>
<td>450 500</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0 –44</td>
<td>0 –70</td>
<td>0 –110</td>
<td>0 –175</td>
<td>0 –280</td>
<td>0 –440</td>
<td>–</td>
<td>–</td>
<td>500 560</td>
<td></td>
</tr>
<tr>
<td>560 630</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0 –50</td>
<td>0 –80</td>
<td>0 –125</td>
<td>0 –200</td>
<td>0 –320</td>
<td>0 –500</td>
<td>–</td>
<td>–</td>
<td>630 710</td>
<td></td>
</tr>
<tr>
<td>710 800</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0 –56</td>
<td>0 –90</td>
<td>0 –140</td>
<td>0 –230</td>
<td>0 –360</td>
<td>0 –560</td>
<td>–</td>
<td>–</td>
<td>800 900</td>
<td></td>
</tr>
<tr>
<td>900 1000</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0 –66</td>
<td>0 –105</td>
<td>0 –165</td>
<td>0 –260</td>
<td>0 –420</td>
<td>0 –660</td>
<td>–</td>
<td>–</td>
<td>1000 1120</td>
<td></td>
</tr>
<tr>
<td>1120 1250</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–78</td>
<td>0 –125</td>
<td>0 –195</td>
<td>0 –310</td>
<td>0 –500</td>
<td>0 –780</td>
<td>–</td>
<td>–</td>
<td>1250 1400</td>
<td></td>
</tr>
<tr>
<td>1400 1600</td>
<td></td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>m6</th>
<th>high</th>
<th>low</th>
<th>n6</th>
<th>high</th>
<th>low</th>
<th>p6</th>
<th>high</th>
<th>low</th>
<th>p7</th>
<th>high</th>
<th>low</th>
<th>mT1</th>
<th>Basic tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>+4</td>
<td>+13</td>
<td>+8</td>
<td>+16</td>
<td>+8</td>
<td>+17</td>
<td>+12</td>
<td>+20</td>
<td>+12</td>
<td>+23</td>
<td>+15</td>
<td>+1.5</td>
<td>+2.5 +5 +12</td>
</tr>
<tr>
<td>15</td>
<td>+6</td>
<td>+16</td>
<td>+10</td>
<td>+19</td>
<td>+10</td>
<td>+21</td>
<td>+15</td>
<td>+24</td>
<td>+15</td>
<td>+28</td>
<td>+19</td>
<td>+3.4</td>
<td>+3.9 +2 +12</td>
</tr>
<tr>
<td>18</td>
<td>+7</td>
<td>+20</td>
<td>+12</td>
<td>+23</td>
<td>+12</td>
<td>+26</td>
<td>+18</td>
<td>+29</td>
<td>+18</td>
<td>+34</td>
<td>+23</td>
<td>+1 +2</td>
<td>+8 +18 +12</td>
</tr>
<tr>
<td>21</td>
<td>+8</td>
<td>+24</td>
<td>+15</td>
<td>+28</td>
<td>+15</td>
<td>+31</td>
<td>+22</td>
<td>+35</td>
<td>+22</td>
<td>+41</td>
<td>+28</td>
<td>+2.5</td>
<td>+4 +11 +25</td>
</tr>
<tr>
<td>25</td>
<td>+9</td>
<td>+28</td>
<td>+17</td>
<td>+33</td>
<td>+17</td>
<td>+37</td>
<td>+26</td>
<td>+42</td>
<td>+26</td>
<td>+50</td>
<td>+34</td>
<td>+2.5</td>
<td>+4 +11 +25</td>
</tr>
<tr>
<td>30</td>
<td>+11</td>
<td>+33</td>
<td>+20</td>
<td>+39</td>
<td>+20</td>
<td>+45</td>
<td>+32</td>
<td>+51</td>
<td>+32</td>
<td>+60</td>
<td>+41</td>
<td>+3</td>
<td>+6 +13 +30</td>
</tr>
<tr>
<td>35</td>
<td>+13</td>
<td>+38</td>
<td>+23</td>
<td>+45</td>
<td>+23</td>
<td>+52</td>
<td>+37</td>
<td>+59</td>
<td>+37</td>
<td>+73</td>
<td>+51</td>
<td>+8</td>
<td>+6 +15 +35</td>
</tr>
<tr>
<td>40</td>
<td>+15</td>
<td>+45</td>
<td>+27</td>
<td>+52</td>
<td>+27</td>
<td>+61</td>
<td>+43</td>
<td>+68</td>
<td>+43</td>
<td>+90</td>
<td>+65</td>
<td>+5</td>
<td>+8 +18 +40</td>
</tr>
<tr>
<td>46</td>
<td>+17</td>
<td>+51</td>
<td>+31</td>
<td>+60</td>
<td>+31</td>
<td>+70</td>
<td>+50</td>
<td>+79</td>
<td>+50</td>
<td>+106</td>
<td>+77</td>
<td>+10</td>
<td>+11 +20 +46</td>
</tr>
<tr>
<td>52</td>
<td>+20</td>
<td>+57</td>
<td>+34</td>
<td>+66</td>
<td>+34</td>
<td>+79</td>
<td>+56</td>
<td>+88</td>
<td>+56</td>
<td>+126</td>
<td>+94</td>
<td>+12 +8 +23 +52</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>+21</td>
<td>+62</td>
<td>+37</td>
<td>+73</td>
<td>+37</td>
<td>+87</td>
<td>+62</td>
<td>+98</td>
<td>+62</td>
<td>+144</td>
<td>+108</td>
<td>+14 +9 +13 +25 +57</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>+23</td>
<td>+67</td>
<td>+40</td>
<td>+80</td>
<td>+40</td>
<td>+95</td>
<td>+68</td>
<td>+108</td>
<td>+68</td>
<td>+166</td>
<td>+126</td>
<td>+16 +10 +15 +27 +63</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>+26</td>
<td>–</td>
<td>+88</td>
<td>+44</td>
<td>–</td>
<td>+122</td>
<td>+78</td>
<td>+194</td>
<td>+50</td>
<td>+194</td>
<td>+150</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>80</td>
<td>+30</td>
<td>–</td>
<td>+100</td>
<td>+50</td>
<td>–</td>
<td>+138</td>
<td>+88</td>
<td>+225</td>
<td>+15</td>
<td>+225</td>
<td>+150</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>90</td>
<td>+34</td>
<td>–</td>
<td>+112</td>
<td>+56</td>
<td>–</td>
<td>+156</td>
<td>+100</td>
<td>+266</td>
<td>+210</td>
<td>+266</td>
<td>+210</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>106</td>
<td>+40</td>
<td>–</td>
<td>+132</td>
<td>+66</td>
<td>–</td>
<td>+186</td>
<td>+120</td>
<td>+316</td>
<td>+250</td>
<td>+316</td>
<td>+250</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>126</td>
<td>+48</td>
<td>–</td>
<td>+156</td>
<td>+78</td>
<td>–</td>
<td>+218</td>
<td>+140</td>
<td>+378</td>
<td>+300</td>
<td>+378</td>
<td>+300</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

| Diameter division (mm) over or less | 100 120 |
|-------------------------------------| 120 140 |
| 140 160 |
Dimensional tolerance for housing bore

(Unit: μm)

<table>
<thead>
<tr>
<th>Diameter division</th>
<th>E7 (over 6)</th>
<th>E10 (over 8)</th>
<th>E11 (over 10)</th>
<th>E12 (over 12)</th>
<th>F6 (over 12)</th>
<th>F7 (over 12)</th>
<th>F8 (over 12)</th>
<th>G6 (over 12)</th>
<th>G7 (over 12)</th>
<th>H6 (over 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter (mm)</td>
<td>high low</td>
</tr>
<tr>
<td>3.6</td>
<td>+3 +3</td>
</tr>
<tr>
<td>4.5</td>
<td>+3 +3</td>
</tr>
<tr>
<td>5.0</td>
<td>+3 +3</td>
</tr>
<tr>
<td>6.0</td>
<td>+3 +3</td>
</tr>
<tr>
<td>7.0</td>
<td>+3 +3</td>
</tr>
<tr>
<td>8.0</td>
<td>+3 +3</td>
</tr>
<tr>
<td>9.0</td>
<td>+3 +3</td>
</tr>
</tbody>
</table>

Appendix

- Appendix 2: Dimensional tolerance for housing bore
- Table listing tolerances for different diameters and over/less divisions.
<table>
<thead>
<tr>
<th>(Unit: μm)</th>
<th>H7</th>
<th>H8</th>
<th>H9</th>
<th>H10</th>
<th>H11</th>
<th>H13</th>
<th>J6</th>
<th>J86</th>
<th>J7</th>
<th>J87</th>
<th>K5</th>
<th>Diameter division</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>+12</td>
<td>+18</td>
<td>0</td>
<td>+30</td>
<td>0</td>
<td>+48</td>
<td>0</td>
<td>+75</td>
<td>0</td>
<td>+180</td>
<td>0</td>
<td>+5</td>
<td>-3</td>
</tr>
<tr>
<td>+15</td>
<td>+22</td>
<td>0</td>
<td>+36</td>
<td>0</td>
<td>+58</td>
<td>0</td>
<td>+90</td>
<td>0</td>
<td>+220</td>
<td>0</td>
<td>+5</td>
<td>-4</td>
</tr>
<tr>
<td>+18</td>
<td>+27</td>
<td>0</td>
<td>+43</td>
<td>0</td>
<td>+70</td>
<td>0</td>
<td>+110</td>
<td>0</td>
<td>+270</td>
<td>0</td>
<td>+6</td>
<td>-5</td>
</tr>
<tr>
<td>+21</td>
<td>+33</td>
<td>0</td>
<td>+52</td>
<td>0</td>
<td>+84</td>
<td>0</td>
<td>+130</td>
<td>0</td>
<td>+330</td>
<td>0</td>
<td>+8</td>
<td>-5</td>
</tr>
<tr>
<td>+25</td>
<td>+39</td>
<td>0</td>
<td>+62</td>
<td>0</td>
<td>+100</td>
<td>0</td>
<td>+160</td>
<td>0</td>
<td>+10</td>
<td>-6</td>
<td>+8</td>
<td>-8</td>
</tr>
<tr>
<td>+30</td>
<td>+46</td>
<td>0</td>
<td>+74</td>
<td>0</td>
<td>+120</td>
<td>0</td>
<td>+190</td>
<td>0</td>
<td>+460</td>
<td>0</td>
<td>+13</td>
<td>-6</td>
</tr>
<tr>
<td>+35</td>
<td>+54</td>
<td>0</td>
<td>+87</td>
<td>0</td>
<td>+140</td>
<td>0</td>
<td>+220</td>
<td>0</td>
<td>+540</td>
<td>0</td>
<td>+16</td>
<td>-6</td>
</tr>
<tr>
<td>+40</td>
<td>+63</td>
<td>0</td>
<td>+100</td>
<td>0</td>
<td>+160</td>
<td>0</td>
<td>+250</td>
<td>0</td>
<td>+630</td>
<td>0</td>
<td>+18</td>
<td>-7</td>
</tr>
<tr>
<td>+46</td>
<td>+72</td>
<td>0</td>
<td>+115</td>
<td>0</td>
<td>+18</td>
<td>0</td>
<td>+290</td>
<td>0</td>
<td>+720</td>
<td>0</td>
<td>+22</td>
<td>-7</td>
</tr>
<tr>
<td>+52</td>
<td>+81</td>
<td>0</td>
<td>+130</td>
<td>0</td>
<td>+210</td>
<td>0</td>
<td>+320</td>
<td>0</td>
<td>+810</td>
<td>0</td>
<td>+25</td>
<td>-7</td>
</tr>
<tr>
<td>+57</td>
<td>+89</td>
<td>0</td>
<td>+140</td>
<td>0</td>
<td>+230</td>
<td>0</td>
<td>+360</td>
<td>0</td>
<td>+890</td>
<td>0</td>
<td>+29</td>
<td>-7</td>
</tr>
<tr>
<td>+63</td>
<td>+97</td>
<td>0</td>
<td>+150</td>
<td>0</td>
<td>+250</td>
<td>0</td>
<td>+400</td>
<td>0</td>
<td>+970</td>
<td>0</td>
<td>+33</td>
<td>-7</td>
</tr>
<tr>
<td>+70</td>
<td>+110</td>
<td>0</td>
<td>+175</td>
<td>0</td>
<td>+280</td>
<td>0</td>
<td>+440</td>
<td>0</td>
<td>+22</td>
<td>-22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+80</td>
<td>+125</td>
<td>0</td>
<td>+200</td>
<td>0</td>
<td>+320</td>
<td>0</td>
<td>+500</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+25</td>
</tr>
<tr>
<td>+90</td>
<td>+140</td>
<td>0</td>
<td>+230</td>
<td>0</td>
<td>+360</td>
<td>0</td>
<td>+560</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+28</td>
</tr>
<tr>
<td>+105</td>
<td>+165</td>
<td>0</td>
<td>+260</td>
<td>0</td>
<td>+420</td>
<td>0</td>
<td>+660</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+33</td>
</tr>
<tr>
<td>+125</td>
<td>+195</td>
<td>0</td>
<td>+310</td>
<td>0</td>
<td>+500</td>
<td>0</td>
<td>+780</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+39</td>
</tr>
<tr>
<td>+150</td>
<td>+230</td>
<td>0</td>
<td>+370</td>
<td>0</td>
<td>+600</td>
<td>0</td>
<td>+920</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+46</td>
</tr>
</tbody>
</table>

(high)
7. Diameter of clearance holes and counterbores for bolts and screws (JIS B 1001)

<table>
<thead>
<tr>
<th>Nominal diameter of screw thread (H12)</th>
<th>Bolt hole diameter (\Ø_{dh})</th>
<th>Chamfering (e)</th>
<th>Counterbore diameter (D')</th>
<th>Nominal diameter of screw thread (H13)</th>
<th>Bolt hole diameter (\Ø_{dh})</th>
<th>Chamfering (e)</th>
<th>Counterbore diameter (D')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>–</td>
<td>0.2</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>–</td>
<td>0.2</td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.8</td>
<td>–</td>
<td>0.2</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>2</td>
<td>–</td>
<td>0.2</td>
<td>5</td>
<td>39</td>
</tr>
<tr>
<td>1.7</td>
<td>1.8</td>
<td>2</td>
<td>2.1</td>
<td>–</td>
<td>0.2</td>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>1.8</td>
<td>2</td>
<td>2.1</td>
<td>2.2</td>
<td>–</td>
<td>0.2</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>–</td>
<td>0.3</td>
<td>7</td>
<td>48</td>
</tr>
<tr>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>–</td>
<td>0.3</td>
<td>8</td>
<td>52</td>
</tr>
<tr>
<td>2.3</td>
<td>2.5</td>
<td>2.7</td>
<td>2.9</td>
<td>–</td>
<td>0.3</td>
<td>8</td>
<td>56</td>
</tr>
<tr>
<td>2.5</td>
<td>2.7</td>
<td>2.9</td>
<td>3.1</td>
<td>–</td>
<td>0.3</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>2.6</td>
<td>2.8</td>
<td>3</td>
<td>3.2</td>
<td>–</td>
<td>0.3</td>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3.4</td>
<td>3.6</td>
<td>–</td>
<td>0.3</td>
<td>9</td>
<td>68</td>
</tr>
<tr>
<td>3.5</td>
<td>3.7</td>
<td>3.9</td>
<td>4.2</td>
<td>–</td>
<td>0.3</td>
<td>10</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>4.3</td>
<td>4.5</td>
<td>4.8</td>
<td>5.5</td>
<td>0.4</td>
<td>11</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>4.8</td>
<td>5</td>
<td>5.3</td>
<td>6</td>
<td>0.4</td>
<td>13</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>5.3</td>
<td>5.5</td>
<td>5.8</td>
<td>6.5</td>
<td>0.4</td>
<td>13</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>6.4</td>
<td>6.6</td>
<td>7</td>
<td>7.8</td>
<td>0.4</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>7.4</td>
<td>7.6</td>
<td>8</td>
<td>–</td>
<td>0.4</td>
<td>18</td>
<td>95</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>0.6</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>0.6</td>
<td>24</td>
<td>105</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>13.5</td>
<td>14</td>
<td>15</td>
<td>1.1</td>
<td>28</td>
<td>110</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>15.5</td>
<td>16</td>
<td>17</td>
<td>1.1</td>
<td>32</td>
<td>115</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>17.5</td>
<td>18</td>
<td>18</td>
<td>1.1</td>
<td>35</td>
<td>120</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>1.1</td>
<td>39</td>
<td>125</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>24</td>
<td>25</td>
<td>1.2</td>
<td>43</td>
<td>130</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>26</td>
<td>27</td>
<td>1.2</td>
<td>46</td>
<td>140</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>28</td>
<td>29</td>
<td>1.2</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>33</td>
<td>1.7</td>
<td>55</td>
<td>–</td>
</tr>
</tbody>
</table>

Note:
1. Class 4 shall be applied mainly to cast holes.
2. The values for the symbol of the dimensional tolerance is in accordance with JIS B 0401 (dimension tolerances and fits).
3. Hole chamfering shall be performed, as required, and its angle shall be 90 degrees as a rule.
4. Where counterbore diameters smaller or larger than the values specified in this table are required with respect to a certain screw-thread nominal diameter, their numerical values shall preferably be selected from the series of counterbore diameters shown in this table as far as possible.
5. The counterbore surface shall be perpendicular to the centre line of the hole, and the counterbore depth shall generally be of such a degree that casting surface is removed.

Reference:
1. The non-shaded area in this table that specifies nominal diameter of screw thread and bolt hole diameters is not specified in ISO 273.
2. The nominal diameter of screw head marked with is not specified in ISO 261.
8. Diameter of clearance holes and counterbores for bolts and screws (JIS B 1001)

![Enlarged drawing of X section](image)

The following shape (drill bottom) is also permissible for the bottom of the hexagonal hole.

(UNIT: mm)

Maximum radii under the head

\[
\theta_{max} = 1.77\max
\]

\[
r_{max} = \frac{d_{max} - d_{min}}{2}
\]

\[
r_{min} \text{ depends on Table 1.}
\]

Maximum radii under the head

\[
\theta_{max} = 1.77\max
\]

\[
r_{max} = \frac{d_{max} - d_{min}}{2}
\]

\[
r_{min} \text{ depends on Table 1.}
\]

Maximum 45°

Angle of vertex and spot facing.

Nominal designation of screw thread (d)

<table>
<thead>
<tr>
<th>d</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M8</th>
<th>M10</th>
<th>M12 (M14)</th>
<th>M16</th>
<th>M20</th>
<th>M24</th>
<th>M30</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0.5</td>
<td>0.7</td>
<td>0.8</td>
<td>1</td>
<td>1.25</td>
<td>1.5</td>
<td>1.75</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>44</td>
<td>52</td>
<td>60</td>
</tr>
<tr>
<td>d_h</td>
<td>Max</td>
<td>5.68</td>
<td>7.22</td>
<td>8.72</td>
<td>10.22</td>
<td>12.27</td>
<td>16.27</td>
<td>21.33</td>
<td>24.33</td>
<td>30.33</td>
<td>36.39</td>
</tr>
<tr>
<td>d_b</td>
<td>Min</td>
<td>5.32</td>
<td>6.78</td>
<td>8.28</td>
<td>9.78</td>
<td>12.73</td>
<td>15.73</td>
<td>17.73</td>
<td>20.67</td>
<td>23.67</td>
<td>29.67</td>
</tr>
<tr>
<td>d_w</td>
<td>Max</td>
<td>3.6</td>
<td>4.7</td>
<td>5.7</td>
<td>6.8</td>
<td>9.2</td>
<td>11.2</td>
<td>13.7</td>
<td>15.7</td>
<td>17.7</td>
<td>22.4</td>
</tr>
<tr>
<td>d_f</td>
<td>Max</td>
<td>3.00</td>
<td>4.00</td>
<td>5.00</td>
<td>6.00</td>
<td>8.00</td>
<td>10.00</td>
<td>12.00</td>
<td>14.00</td>
<td>16.00</td>
<td>20.00</td>
</tr>
<tr>
<td>d_b</td>
<td>Min</td>
<td>2.86</td>
<td>3.82</td>
<td>4.82</td>
<td>5.82</td>
<td>7.78</td>
<td>9.78</td>
<td>11.73</td>
<td>13.73</td>
<td>15.73</td>
<td>19.67</td>
</tr>
<tr>
<td>e</td>
<td>Min</td>
<td>2.87</td>
<td>3.44</td>
<td>4.58</td>
<td>5.72</td>
<td>6.86</td>
<td>9.15</td>
<td>11.43</td>
<td>13.72</td>
<td>16</td>
<td>19.44</td>
</tr>
<tr>
<td>l_f</td>
<td>Max</td>
<td>0.51</td>
<td>0.6</td>
<td>0.68</td>
<td>0.68</td>
<td>1.02</td>
<td>1.02</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
<td>2.04</td>
</tr>
<tr>
<td>k</td>
<td>Max</td>
<td>3.00</td>
<td>4.00</td>
<td>5.00</td>
<td>6.00</td>
<td>8.00</td>
<td>10.00</td>
<td>12.00</td>
<td>14.00</td>
<td>16.00</td>
<td>20.00</td>
</tr>
<tr>
<td>r</td>
<td>Min</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.25</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>s</td>
<td>Nominal</td>
<td>2.5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>17</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>t</td>
<td>Min</td>
<td>1.3</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>v</td>
<td>Max</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.8</td>
<td>1</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>2</td>
</tr>
<tr>
<td>d_w</td>
<td>Min</td>
<td>5.07</td>
<td>6.53</td>
<td>8.03</td>
<td>9.38</td>
<td>12.33</td>
<td>15.33</td>
<td>17.23</td>
<td>20.17</td>
<td>23.17</td>
<td>28.87</td>
</tr>
<tr>
<td>w</td>
<td>Min</td>
<td>1.15</td>
<td>1.4</td>
<td>1.9</td>
<td>2.3</td>
<td>3.3</td>
<td>4</td>
<td>4.8</td>
<td>5.8</td>
<td>8.6</td>
<td>10.4</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Length (l)</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.36</td>
<td>4.24</td>
</tr>
<tr>
<td>5</td>
<td>4.76</td>
<td>5.24</td>
</tr>
<tr>
<td>6</td>
<td>5.76</td>
<td>6.24</td>
</tr>
<tr>
<td>8</td>
<td>7.71</td>
<td>8.29</td>
</tr>
<tr>
<td>10</td>
<td>9.71</td>
<td>10.29</td>
</tr>
<tr>
<td>12</td>
<td>11.65</td>
<td>12.35</td>
</tr>
<tr>
<td>14</td>
<td>13.95</td>
<td>14.65</td>
</tr>
<tr>
<td>16</td>
<td>15.65</td>
<td>16.30</td>
</tr>
<tr>
<td>20</td>
<td>19.58</td>
<td>20.42</td>
</tr>
<tr>
<td>25</td>
<td>24.58</td>
<td>25.42</td>
</tr>
<tr>
<td>30</td>
<td>29.58</td>
<td>30.42</td>
</tr>
<tr>
<td>35</td>
<td>34.5</td>
<td>35.8</td>
</tr>
<tr>
<td>40</td>
<td>39.5</td>
<td>40.5</td>
</tr>
<tr>
<td>45</td>
<td>44.5</td>
<td>45.5</td>
</tr>
<tr>
<td>50</td>
<td>49.5</td>
<td>50.5</td>
</tr>
<tr>
<td>55</td>
<td>54.4</td>
<td>55.6</td>
</tr>
<tr>
<td>60</td>
<td>59.4</td>
<td>60.6</td>
</tr>
<tr>
<td>65</td>
<td>64.4</td>
<td>65.6</td>
</tr>
<tr>
<td>70</td>
<td>69.4</td>
<td>70.6</td>
</tr>
<tr>
<td>75</td>
<td>74.4</td>
<td>80.6</td>
</tr>
<tr>
<td>80</td>
<td>89.3</td>
<td>90.7</td>
</tr>
<tr>
<td>90</td>
<td>99.3</td>
<td>100.7</td>
</tr>
<tr>
<td>100</td>
<td>109.3</td>
<td>110.7</td>
</tr>
<tr>
<td>110</td>
<td>119.3</td>
<td>120.7</td>
</tr>
<tr>
<td>120</td>
<td>129.3</td>
<td>130.8</td>
</tr>
<tr>
<td>130</td>
<td>139.3</td>
<td>140.8</td>
</tr>
<tr>
<td>140</td>
<td>149.3</td>
<td>160.8</td>
</tr>
<tr>
<td>150</td>
<td>159.3</td>
<td>160.8</td>
</tr>
<tr>
<td>160</td>
<td>169.3</td>
<td>170.8</td>
</tr>
<tr>
<td>170</td>
<td>179.3</td>
<td>180.8</td>
</tr>
<tr>
<td>180</td>
<td>189.075</td>
<td>200.555</td>
</tr>
<tr>
<td>190</td>
<td>199.075</td>
<td>200.555</td>
</tr>
</tbody>
</table>

Shall be channeled end.

(nominal)
Appendix

9. Parallel keys and keyways (JIS B 1301)

Unit: mm

(a) Shape and dimension of parallel keys

<table>
<thead>
<tr>
<th>Nominal size of key $b \times h$</th>
<th>Key dimension b</th>
<th>Key dimension h</th>
<th>Key dimension c</th>
<th>Nominal designation d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Standard dimension</td>
<td>Tolerance (h9)</td>
<td>Standard dimension</td>
<td>Tolerance</td>
<td>l</td>
<td>l</td>
<td>l</td>
</tr>
<tr>
<td>2 x 2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0.16 to 0.25</td>
<td>6 to 20</td>
<td>–</td>
</tr>
<tr>
<td>3 x 3</td>
<td>3</td>
<td>–0.025</td>
<td>3</td>
<td>–0.025</td>
<td>0.16 to 0.25</td>
<td>6 to 36</td>
<td>–</td>
</tr>
<tr>
<td>4 x 4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0.16 to 0.25</td>
<td>8 to 45</td>
<td>–</td>
</tr>
<tr>
<td>5 x 5</td>
<td>5</td>
<td>–0.030</td>
<td>5</td>
<td>–0.030</td>
<td>0.25 to 0.40</td>
<td>10 to 56</td>
<td>–</td>
</tr>
<tr>
<td>6 x 6</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0.25 to 0.40</td>
<td>14 to 70</td>
<td>–</td>
</tr>
<tr>
<td>(7 x 7)</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0.25 to 0.40</td>
<td>16 to 80</td>
<td>–</td>
</tr>
<tr>
<td>8 x 7</td>
<td>8</td>
<td>–0.036</td>
<td>8</td>
<td>–0.036</td>
<td>0.40 to 0.60</td>
<td>18 to 90</td>
<td>M3</td>
</tr>
<tr>
<td>10 x 8</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0.40 to 0.60</td>
<td>22 to 110</td>
<td>M3</td>
</tr>
<tr>
<td>12 x 10</td>
<td>12</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0.40 to 0.60</td>
<td>28 to 140</td>
<td>M4</td>
</tr>
<tr>
<td>14 x 13</td>
<td>14</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>0.40 to 0.60</td>
<td>36 to 160</td>
<td>M5</td>
</tr>
<tr>
<td>(15 x 15)</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>40 to 180</td>
<td>M5</td>
</tr>
<tr>
<td>16 x 16</td>
<td>16</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>45 to 180</td>
<td>M5</td>
</tr>
<tr>
<td>18 x 18</td>
<td>18</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>50 to 200</td>
<td>M6</td>
</tr>
<tr>
<td>20 x 20</td>
<td>20</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>56 to 220</td>
<td>M6</td>
</tr>
<tr>
<td>22 x 22</td>
<td>22</td>
<td>14</td>
<td>14</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>63 to 250</td>
<td>M6</td>
</tr>
<tr>
<td>(24 x 24)</td>
<td>24</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>70 to 280</td>
<td>M8</td>
</tr>
<tr>
<td>25 x 25</td>
<td>25</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>70 to 280</td>
<td>M8</td>
</tr>
<tr>
<td>28 x 28</td>
<td>28</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>80 to 320</td>
<td>M10</td>
</tr>
<tr>
<td>32 x 32</td>
<td>32</td>
<td>18</td>
<td>18</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>90 to 360</td>
<td>M10</td>
</tr>
<tr>
<td>(35 x 35)</td>
<td>35</td>
<td>22</td>
<td>22</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>100 to 400</td>
<td>M10</td>
</tr>
<tr>
<td>36 x 36</td>
<td>36</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>100 to 400</td>
<td>M10</td>
</tr>
<tr>
<td>(38 x 38)</td>
<td>38</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>–</td>
<td>M12</td>
</tr>
<tr>
<td>40 x 40</td>
<td>40</td>
<td>22</td>
<td>22</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>–</td>
<td>M12</td>
</tr>
<tr>
<td>(42 x 42)</td>
<td>42</td>
<td>26</td>
<td>26</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>–</td>
<td>M10</td>
</tr>
<tr>
<td>45 x 45</td>
<td>45</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>–</td>
<td>M12</td>
</tr>
<tr>
<td>50 x 50</td>
<td>50</td>
<td>28</td>
<td>28</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>–</td>
<td>M12</td>
</tr>
<tr>
<td>56 x 56</td>
<td>56</td>
<td>32</td>
<td>32</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>–</td>
<td>M12</td>
</tr>
<tr>
<td>63 x 63</td>
<td>63</td>
<td>32</td>
<td>32</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>–</td>
<td>M12</td>
</tr>
<tr>
<td>70 x 70</td>
<td>70</td>
<td>36</td>
<td>36</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>–</td>
<td>M16</td>
</tr>
<tr>
<td>80 x 80</td>
<td>80</td>
<td>40</td>
<td>40</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>–</td>
<td>M16</td>
</tr>
<tr>
<td>90 x 90</td>
<td>90</td>
<td>45</td>
<td>45</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>–</td>
<td>M16</td>
</tr>
<tr>
<td>100 x 50</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>0.50 to 0.80</td>
<td>–</td>
<td>M20</td>
</tr>
</tbody>
</table>

Note:

1. Select l from the following within the range of the table. The dimensional tolerance for l is basically h12 of JIS B0401.

2. Instead of 45° chamfering (c), rounding (r) is also acceptable.
Nominal size of key

<table>
<thead>
<tr>
<th>Nominal size of key</th>
<th>Basic dimension of b₁ and b₂</th>
<th>Sliding type</th>
<th>Regular type</th>
<th>Precision</th>
<th>Tolerance of t₁ and t₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>b₁</td>
<td>b₂</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>2 x 2</td>
<td>+0.025</td>
<td>+0.060</td>
<td>-0.004</td>
<td>±0.0125</td>
<td>0.08 to 0.16</td>
</tr>
<tr>
<td>3 x 3</td>
<td>0</td>
<td>+0.020</td>
<td>-0.029</td>
<td>±0.031</td>
<td>0.16 to 0.25</td>
</tr>
<tr>
<td>4 x 4</td>
<td>+0.030</td>
<td>+0.078</td>
<td>0</td>
<td>±0.0150</td>
<td>0.16 to 0.25</td>
</tr>
<tr>
<td>5 x 5</td>
<td>0</td>
<td>+0.030</td>
<td>-0.030</td>
<td>±0.042</td>
<td>0.16 to 0.25</td>
</tr>
<tr>
<td>6 x 6</td>
<td>0</td>
<td>+0.036</td>
<td>0</td>
<td>±0.0180</td>
<td>0.25 to 0.40</td>
</tr>
<tr>
<td>7 x 7</td>
<td>+0.036</td>
<td>+0.098</td>
<td>0</td>
<td>±0.0180</td>
<td>0.25 to 0.40</td>
</tr>
<tr>
<td>8 x 7</td>
<td>0</td>
<td>+0.030</td>
<td>-0.036</td>
<td>±0.051</td>
<td>0.25 to 0.40</td>
</tr>
<tr>
<td>9 x 9</td>
<td>+0.043</td>
<td>+0.120</td>
<td>0</td>
<td>±0.0215</td>
<td>0.25 to 0.40</td>
</tr>
<tr>
<td>10 x 10</td>
<td>0</td>
<td>+0.050</td>
<td>-0.043</td>
<td>±0.061</td>
<td>0.25 to 0.40</td>
</tr>
<tr>
<td>11 x 11</td>
<td>0</td>
<td>+0.052</td>
<td>0</td>
<td>±0.022</td>
<td>0.40 to 0.60</td>
</tr>
<tr>
<td>12 x 12</td>
<td>+0.052</td>
<td>+0.149</td>
<td>0</td>
<td>±0.0260</td>
<td>0.40 to 0.60</td>
</tr>
<tr>
<td>13 x 13</td>
<td>0</td>
<td>+0.065</td>
<td>-0.052</td>
<td>±0.074</td>
<td>0.40 to 0.60</td>
</tr>
<tr>
<td>14 x 14</td>
<td>+0.062</td>
<td>+0.180</td>
<td>0</td>
<td>±0.0310</td>
<td>0.70 to 1.00</td>
</tr>
<tr>
<td>15 x 15</td>
<td>0</td>
<td>+0.080</td>
<td>-0.062</td>
<td>±0.088</td>
<td>0.70 to 1.00</td>
</tr>
<tr>
<td>16 x 16</td>
<td>+0.062</td>
<td>+0.200</td>
<td>0</td>
<td>±0.0310</td>
<td>0.70 to 1.00</td>
</tr>
<tr>
<td>17 x 17</td>
<td>0</td>
<td>+0.220</td>
<td>-0.074</td>
<td>±0.0370</td>
<td>1.20 to 1.60</td>
</tr>
<tr>
<td>18 x 18</td>
<td>+0.074</td>
<td>+0.220</td>
<td>0</td>
<td>±0.032</td>
<td>1.20 to 1.60</td>
</tr>
<tr>
<td>19 x 19</td>
<td>0</td>
<td>+0.100</td>
<td>-0.074</td>
<td>±0.106</td>
<td>1.20 to 1.60</td>
</tr>
<tr>
<td>20 x 20</td>
<td>+0.074</td>
<td>+0.260</td>
<td>0</td>
<td>±0.0435</td>
<td>2.00 to 2.50</td>
</tr>
<tr>
<td>21 x 21</td>
<td>0</td>
<td>+0.120</td>
<td>-0.087</td>
<td>±0.0124</td>
<td>2.00 to 2.50</td>
</tr>
</tbody>
</table>

Note:
- **Applicable shaft diameters should be derived from the torque that corresponds to the key strength.**
- Shown here, therefore, as reference for general usage.
- When the key size is appropriate for the transmission torque, a shaft larger than the applicable shaft diameter may be used. In that case, it is recommended to adjust t₁ and t₂ so that the key side uniformly contacts the shaft and hub. This does not apply to shafts smaller than the applicable shaft diameter.

Reference:
- Size codes in () are not stipulated in the corresponding internal standards and should not be used in new designs.

Reference:

- Cross section drawing of keyway

Note:

- *1 Applicable shaft diameters should be derived from the torque that corresponds to the key strength.

- Shown here, therefore, as reference for general usage.

- When the key size is appropriate for the transmission torque, a shaft larger than the applicable shaft diameter may be used. In that case, it is recommended to adjust t₁ and t₂ so that the key side uniformly contacts the shaft and hub. This does not apply to shafts smaller than the applicable shaft diameter.
Order Information Sheet

Please complete the form below and send it with your order.

Company Name: ____________________________
Name: ____________________________
E-mail: ____________________________

System configuration and selected motor
We would appreciate if you could provide your system configuration drawing that helps us to understand the speed, constant torque, and load inertia moment of the output shaft for the reduction gear.

System configuration

Motor model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Motor rated output (KW)</td>
</tr>
<tr>
<td>TM0</td>
<td>Motor rated torque (N-m)</td>
</tr>
<tr>
<td>TM1</td>
<td>Motor momentary maximum torque (N-m)</td>
</tr>
<tr>
<td>NM0</td>
<td>Motor rated speed (rpm)</td>
</tr>
</tbody>
</table>

Motor mounting pilot diameter (mm) a
Motor mounting bolt P.C.D (mm) b
Motor mounting bolt size (mm) c
Motor shaft length (mm) d
Motor shaft diameter (mm) e
Motor shaft effective length (mm) g

Operation pattern (output shaft for the reduction gear)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>Acceleration time (s)</td>
</tr>
<tr>
<td>t2</td>
<td>Constant speed operation time (s)</td>
</tr>
<tr>
<td>t3</td>
<td>Deceleration time (s)</td>
</tr>
<tr>
<td>t4</td>
<td>One operation cycle time (s)</td>
</tr>
<tr>
<td>Q1</td>
<td>Number of operation cycles per day (times)</td>
</tr>
<tr>
<td>Q2</td>
<td>Number of operating days per year (days)</td>
</tr>
<tr>
<td>N2</td>
<td>Constant speed (rpm)</td>
</tr>
<tr>
<td>T1</td>
<td>Max. torque for startup (N-m)</td>
</tr>
<tr>
<td>T2</td>
<td>Constant torque (N-m)</td>
</tr>
<tr>
<td>T3</td>
<td>Max. torque for stop (N-m)</td>
</tr>
</tbody>
</table>

External load (output shaft for the reduction gear)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>Radial load (N)</td>
</tr>
<tr>
<td>L1</td>
<td>Distance to the point of radial load application (mm)</td>
</tr>
<tr>
<td>W2</td>
<td>Axial load (N)</td>
</tr>
<tr>
<td>L2</td>
<td>Distance to the point of axial load application (mm)</td>
</tr>
</tbody>
</table>
Guarantee

- Nabtesco Corporation guaranties that the GH SERIES are free from defects in materials and workmanship.
- The term of guarantee shall be one year after delivery or 2,000 hours of operation after the installation on an actual machine, whichever is earlier, on condition that the product is operated under the rated operation conditions specified by us, under normal assembly and lubrication conditions.
- If any defect in materials or workmanship is detected during the above guarantee term, the product will be repaired or replaced at our expense, provided that the number of man-hours required for demounting and remounting the product from the machine, transportation expenses for re-delivery, warehousing and other incidental expenses shall be excluded from our obligation.
- No compensation will be provided for the lost opportunities or any other type of loss due to a shutdown of operation that was caused by a defect in the product.
- If compensation under the guarantee is discharged monetarily, the upper limit of the amount shall not exceed the selling price of the product which is the subject of the claim.

Cautions for use of GH series

- If the end user of the product is a military interest or if the product is to be used in the manufacture of weapons, the product may be subject to export regulations prescribed in the Foreign Trade Control Act. Confirm these conditions before exporting the product and take the necessary steps.
- If failure or malfunction of the product may directly endanger human life or if it is used in units which may injure the human body (atomic facilities, space equipment, medical equipment, safety units, etc.), examination of individual situations is required. Contact our agent or nearest business office in such a case.
- Although this product has been manufactured under strict quality control, if it is to be used in equipment that could cause serious injury or damage to facilities as a result of failure of the product, all appropriate safety measures must be taken.
- When this product is used in a special environment (clean room, food handling facility, etc.), please contact our agent or nearest business office.
- Disassembling the product and analyzing the inside is prohibited under reverse engineering and other related regulations.