TA2P

- Industrial Motion

Both the TA2 and the TA2P are compact, robust, and capable of performing well in certain outdoor environments. A more powerful motor makes the TA2P capable of handling load ratings up to 3500 N (787 pounds) while retaining its compact size. In addition to the high power motor, the TA2P linear actuator is available with multiple choices for feedback sensors.

General Features

Max. load
Max. speed at max. load
Max. speed at no load
Retracted length

IP rating
Certificate
Stroke
Output Signals
Voltage
Color
Operational temperature range
Operational temperature range
at full performance

3,500N (push); 2,000N (pull)
$2.4 \mathrm{~mm} / \mathrm{s}$
$56.5 \mathrm{~mm} / \mathrm{s}$
\geq Stroke +108 mm (with Hall sensors or without output signals)
IP66D
UL73
20~1000mm
POT, Reed, Hall sensors
12 / 24 / 36V DC; 12 / 24V DC (PTC)
Silver
$-25^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$

Drawing

Dimensions
without Output Signal
or with Hall Sensors
(mm)

Dimensions
with POT
or Reed Sensor
(mm)

Load and Speed

CODE	Load (Typical	(A)	Typical	(mm/s)
	Push	Pull	Locking Force (N)	No Load 24V DC	With Load 24V DC	No Load $24 \mathrm{~V} D C$	With Load 24V DC
Motor	ORPM	le 2					
A	250	250	250	1.2	2.3	43.0	36.0
B	500	500	500	1.1	2.5	25.8	23.0
C	1000	1000	1000	1.1	3.0	14.0	11.8
D	1500	1500	1500	1.0	2.8	9.0	8.0
E	2000	2000	2000	1.0	2.8	7.1	6.2
Motor	00RPM	le 25					
F	250	250	250	1.6	3.0	56.5	45.0
G	500	500	500	1.5	3.0	32.5	28.5
H	1000	1000	1000	1.5	3.0	16.5	14.3
K	1500	1500	1500	1.3	3.0	11.1	10.0
L	2000	2000	2000	1.3	3.0	8.8	7.7
Motor	800RPM	cle 25					
S	3500	2000	3500	0.8	2.8	3.2	2.4
Motor	200RPM	cle 25					
T	2000	2000	2000	0.3	0.9	3.2	2.3

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

6 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC. With a 36V DC motor, the current is approximately two-thirds the current measured in 24 V DC. Speed will be similar for all the voltages.

7 The current \& speed in table are tested when the actuator is extending under push load.
8 The current \& speed in table and diagram are tested with a stable 24 V DC power supply.
9 Standard stroke: Min. $\geq 20 \mathrm{~mm}$, Max. please refer to below table.

CODE	Load (N)	Max Stroke (mm)
A, F	≤ 250	1000
B, G	≤ 750	800
C, H	≤ 1000	600
D, K	≤ 1500	500
E, L, T	≤ 2000	450
S	≤ 3500	300

Performance Data (24V DC)

Motor Speed (5200RPM, duty cycle 25%)

Speed vs. Load

Current vs. Load

Note

The performance data in the curve charts shows theoretical value

Performance Data (24V DC)

Motor Speed (6600RPM, duty cycle 25\%)

Speed vs. Load

Current vs. Load

Note

1 The performance data in the curve charts shows theoretical value.

Performance Data (24V DC)

Motor Speed (3800RPM, duty cycle 25\%)

Speed vs. Load

Current vs. Load

Note

1 The performance data in the curve charts shows theoretical value.
timotion

Performance Data (24V DC)

Motor Speed (2200RPM, duty cycle 25\%)

Speed vs. Load

Current vs. Load

Note

1 The performance data in the curve charts shows theoretical value.

TA2P

Voltage	$1=12 \mathrm{~V} \mathrm{DC}$	$3=36 \mathrm{~V} \mathrm{DC}$	$6=12 \mathrm{~V} \mathrm{DC} PTC$,
See page 10	$2=24 \mathrm{~V} D C$	$5=24 \mathrm{~V} D$, PTC	
Load and Speed	See page 3		

Stroke (mm)	See page 3	
Retracted Length (mm)	See page 9	
Rear Attachment (mm)	$1=$ Aluminum casting, hole 6.4 , one piece casting with gear box	4 = Aluminum casting, U clevis, slot 6.0, depth 10.5, hole 6.4 , one piece casting with gear box
See page 10	2 = Aluminum casting, hole 8.0 , one piece casting with gear box	5 = Aluminum casting, U clevis, slot 6.0, depth 10.5, hole 8.0, one piece casting with gear box
	3 = Aluminum casting, hole 10.0, one piece casting with gear box	$6=$ Aluminum casting, U clevis, slot 6.0 , depth 10.5 , hole 10.0 , one piece casting with gear box
Front Attachment (mm)	1 = Aluminum casting, hole 6.4 2 = Aluminum casting, hole 8.0	4 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 6.4
See page 11	$3=$ Aluminum CNC, U clevis, slot 6.0 , depth 16.0 , hole 10.0	5 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 8.0
Direction of Rear Attachment (Counterclockwise)	$1=90^{\circ} \quad 2=0^{\circ}$	

See page 11

Functions for	1 = Two switches at full retracted / extended positions to cut current			
Limit Switches	2 = Two switches at full retracted / extended positions to cut current + third one in between to send signal			
See page 12	3 Two switches at full retracted / extended positions to send signal			
	4 = Two switches at full retracted / extended positions to send signal + third one in between to send signal			
Output Signals	$0=$ Without	1 = POT	3 = Reed sensor	5 = Hall sensor * 2
Connector	1 = DIN 6P, 90° plug	2 = Tinned leads		
See page 12				
Cable Length (mm)	1 = Straight, 300	2 = Straight, 600	3 = Straight, 100	

IP Rating	$1=$ Without	$2=I P 54$	$3=I P 66$	$6=I P 66 D$

TA2P Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B+C=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Attachment		
Front Attachment	Rear Attachment	
	$1,2,3$	$4,5,6$
$\mathbf{1 , 2}$	+108	+112
$\mathbf{3 , 4 , 5}$	+120	+124

C. Output Signals	
CODE	
$\mathbf{0 , 4 , 5}$	-
$\mathbf{1 , 3}$	+30

B. Load V.S. Stroke

Stroke (mm)	Load (N)	
	<3500	$=3500$
20~150	-	+5
151~200	+2	+7
201~250	+2	+7
251~300	+2	+7
301~350	+12	+17
351~400	+22	+27
401~450	+32	+37
451~500	+42	+47
501~550	+52	+57
551~600	+62	+67
601~650	+72	+77
651~700	+82	+87
701~750	+92	+97
751~800	+102	+107
801~850	+112	+117
851~900	+122	+127
901~950	+132	+137
951~1000	+142	+147

Voltage

Rear Attachment (mm)

1 = Aluminum casting, hole 6.4, one piece casting with gear box

2 = Aluminum casting, hole 8.0, one piece casting with gear box

6 = Aluminum casting, U clevis, slot 6.0, depth 10.5 , hole 10.0 , one piece casting with gear box

$3=$ Aluminum casting, hole 10.0 , one piece casting with gear box

4 = Aluminum casting, U clevis, slot 6.0, depth 10.5 , hole 6.4 , one piece casting with gear box

5 = Aluminum casting, U clevis, slot 6.0, depth 10.5, hole 8.0, one piece casting with gear box

TA2P Ordering Key Appendix

Front Attachment (mm)

1 = Aluminum casting, hole 6.4
$2=$ Aluminum casting, hole 8.0

우

3 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 10.0

4 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 6.4

5 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 8.0

Direction of Rear Attachment (Counterclockwise)

$1=90^{\circ}$
$2=0^{\circ}$

TA2P Ordering Key Appendix

Functions for Limit Switches

Wire Definitions

CODE	Pin					
	1 (Green)	2 (Red)	3 (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch

Connector

$1=$ DIN 6P, 90° plug

$2=$ Tinned leads

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application.
TiMOTION products are subject to change without prior notice.

