TA2

series

- Industrial Motion

TiMOTION's TA2 series linear actuator is compact, robust and capable of performing well in certain outdoor environments. This linear actuator is perfect for use in small spaces where force or capability cannot be sacrificed. Options include feedback sensors, signal sending limit switches and 90 degree clevis mounting.

General Features

Max. load
Max. speed at max. load
Max. speed at no load
Retracted length
IP rating
Certificate
Stroke
Output signals
Voltage

Color
Operational temperature range

Operational temperature range
at full performance

1,000N (push/pull)

$7.6 \mathrm{~mm} / \mathrm{s}$
$67.5 \mathrm{~mm} / \mathrm{s}$
\geq Stroke +105 mm (without output signals)
IP66D
EMC
20~1000mm
POT, Reed, Hall sensors
12 / 24 / 36 / 48V DC;
12 / 24 / 36 / 48V DC (PTC)
Silver
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}($ Load $<500 \mathrm{~N})$;
$-25^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}($ Load $\geq 500 \mathrm{~N})$
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$

Drawing

Dimensions without
Output Signals
(mm)

Dimensions with
Output Signals
(mm)

Load and Speed

CODE	Load (N)		Self Locking Force (N)	Typical Current (A)		Typical Speed (mm/s)	
	Push	Pull		No Load 24V DC	With Load 24V DC	No Load 24V DC	With Load 24V DC
Motor Speed (4200RPM, duty cycle 25\%)							
A	120	120	120	0.8	1.0	44.0	33.0
B	240	240	240	0.7	1.0	22.0	16.5
C	500	500	500	0.6	0.9	11.0	8.5
D	750	750	750	0.6	0.9	7.5	6.2
E	1000	1000	1000	0.6	0.9	5.6	4.6
Motor Speed (6000RPM, duty cycle 25%)							
F	120	120	120	1.0	1.8	67.5	51.0
G	240	240	240	0.9	1.7	33.5	26.5
H	500	500	500	0.8	1.5	17.0	14.0
K	750	750	750	0.8	1.5	11.0	10.0
L	1000	1000	1000	0.8	1.5	9.0	7.6

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in

3 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC. With a 36 V DC motor, the current is approximately two-thirds the current measured in 24 V DC. With a 48 V DC motor, the current is approximately half the current measured in 24 V DC. Speed will be similar for all the voltages.

4 The current \& speed in table are tested when the actuator is extending under push load
5 The current \& speed in table and diagram are tested with a stable 24 V DC power supply.
6 With load, noise level $\leq 74 \mathrm{dBA}$ (by TiMOTION test standard, ambient noise level $\leq 36 \mathrm{dBA}$)

CODE	Load (N)	Max Stroke (mm)
A, B, F, G	≤ 250	1000
C, D, H, K	≤ 750	800
E, L	≤ 1000	600

Performance Data (24V DC)

Motor Speed (4200RPM, duty cycle 25\%)

Speed vs. Load

Current vs. Load

Performance Data (24V DC)

Motor Speed (6000RPM, duty cycle 25\%)

Speed vs. Load

Current vs. Load

TA2

Voltage	$1=12 \mathrm{~V} \mathrm{DC}$	$3=36 \mathrm{~V} \mathrm{DC}$	$5=24 \mathrm{~V} \mathrm{DC}$, PTC	$7=36 \mathrm{~V} \mathrm{DC}$, PTC
	$2=24 \mathrm{~V} \mathrm{DC}$	$4=48 \mathrm{~V} \mathrm{DC}$	$6=12 \mathrm{~V} \mathrm{DC} PTC$,	$8=48 \mathrm{~V} \mathrm{DC} PTC$,
Load and Speed	See page 3			

Load and Speed See page 3

Stroke (mm)	See page 3	
Retracted Length (mm)	See page 7	
Rear Attachment (mm)	1 = Aluminum, slotless, hole 6.4 , one piece casting with gear box	4 = Aluminum, U clevis, slot 6.0, depth 10.5, hole 6.4, one piece casting with gear box
See page 8	2 = Aluminum, slotless, hole 8.0, one piece casting with gear box 3 = Aluminum, slotless, hole 10.0, one piece casting with gear box	$\begin{aligned} & 5=\text { Aluminum, } U \text { clevis, slot } 6.0 \text {, depth } 10.5 \text {, hole } 8.0 \text {, } \\ & \text { one piece casting with gear box } \\ & 6=\text { Aluminum, } U \text { clevis, slot } 6.0 \text {, depth } 10.5 \text {, hole } 10.0 \text {, } \\ & \text { one piece casting with gear box } \end{aligned}$
Front Attachment (mm)	1 = Aluminum, slotless, hole 6.4 2 = Aluminum, slotless, hole 8.0	4 = Aluminum, U clevis, slot 6.0 , depth 16.0 , hole 6.4 5 = Aluminum, U clevis, slot 6.0 , depth 16.0, hole 8.0
See page 9	3 = Aluminum, U clevis, slot 6.0, depth 16.0, hole 10.0	6 = Aluminum, slotless, hole 10.0
Direction of Rear Attachment (Counterclockwise)	$1=90^{\circ} \quad 2=0^{\circ}$	

See page 9

Functions for	1 = Two switches at full retracted / extended positions to cut current			
Limit Switches	2 = Two switches at full retracted / extended positions to cut current + third one in between to send signal			
See page 10	3 = Two switches at full retracted / extended positions to send signal			
	4 = Two switches at full retracted / extended positions to send signal + third one in between to send signal			
Output Signal	$0=$ Without	1 = POT	3 = Reed sensor	5 = Hall sensor*2
Connector	$1=$ DIN 6P, 90° plug	$2=$ Tinned leads		
See page 10				
Cable Length (mm)	1 = Straight, 300	$2=$ Straight, 600	3 = Straight, 100	
IP Rating	1 = Without	$2=1$ P54	3 \| P66	6 = IP66D

TA2 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B+C=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Rear/Front Attachment		
Front Attachment	Rear Attachment	
$\mathbf{1 , 2 , 6}$	$1,2,3$	$4,5,6$
$\mathbf{3 , 4 , 5}$	+105	+109

C. Output Signal

0
$\mathbf{1 , 3 , 4 , 5}+30$

CODE
B. Stroke (mm)

20~150
151~200 +2
201~250 +2
301~350 +12
351~400 +22
401~450 +32
451~500 +42

501~550 +52
551~600 +62

$\mathbf{6 0 1 \sim 6 5 0}$	+72
$\mathbf{6 5 1 \sim 7 0 0}$	+82
$\mathbf{7 0 1 \sim 7 5 0}$	+92
$\mathbf{7 5 1 \sim 8 0 0}$	+102
$\mathbf{8 0 1 \sim 8 5 0}$	+112
$\mathbf{8 5 1 \sim 9 0 0}$	+122
$\mathbf{9 0 1 \sim 9 5 0}$	+132
$\mathbf{9 5 1 \sim 1 0 0 0}$	+142

Voltage

Rear Attachment (mm)

1 = Aluminum, slotless, hole 6.4, one piece casting with gear box

2 = Aluminum, slotless, hole 8.0, one piece casting with gear box

6 = Aluminum, U clevis, slot 6.0, depth 10.5, hole 10.0, one piece casting with gear box

5 = Aluminum, U clevis, slot 6.0, depth 10.5, hole 8.0, one piece casting with gear box

3 = Aluminum, slotless, hole 10.0, one piece casting with gear box

4 = Aluminum, U clevis, slot 6.0, depth 10.5, hole 6.4, one piece casting with gear box

TA2 Ordering Key Appendix

Front Attachment (mm)

1 = Aluminum, slotless, hole 6.4

4 = Aluminum, U clevis, slot 6.0 , depth 16.0, hole 6.4

2 = Aluminum, slotless, hole 8.0

5 = Aluminum, U clevis, slot 6.0 , depth 16.0, hole 8.0

6 = Aluminum, slotless, hole 10.0

3 = Aluminum, U clevis, slot 6.0 , depth 16.0, hole 10.0

Direction of Rear Attachment (Counterclockwise)

$1=90^{\circ}$
$2=0^{\circ}$

TA2 Ordering Key Appendix

Functions for Limit Switches

Wire Definitions

CODE	Pin					
	1 (Green)	2 (Red)	\bigcirc (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch

Connector

$2=$ Tinned leads

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application.
TiMOTION products are subject to change without prior notice.

