series

Product Segments

- Industrial Motion

TiMOTION's JP3 series inline linear actuator was designed for low load industrial applications where up to IP69K dust and liquid ingress protection is necessary. It is best suited for applications with visual or compact installation dimension requirements. Hall sensors are optional for the JP3 which allow for synchronization and position feedback.

General Features

Max. load
Max. speed at max. load
Max. speed at no load
Retracted length
IP rating
Certificate
Stroke
Output signals
Voltage
Color
Operational temperature range
Operational temperature range at full performance

Storage temperature range

2,000N (push/pull)
$3.5 \mathrm{~mm} / \mathrm{s}$
$23.5 \mathrm{~mm} / \mathrm{s}$
\geq Stroke +217 mm
IP69K
UL73
20~1000mm
Hall sensors
12/24V DC; 12/24V DC (PTC)
Black, grey
$-5^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$

Drawing

Standard Dimensions
(mm)

Load and Speed

CODE	Load (N)		Self Locking Force (N)	Typical Current (A)		Typical Speed (mm/s)	
	Push	Pull		No Load 24V DC	With Load 24V DC	No Load 24V DC	With Load 24V DC
Motor Speed (5600RPM, Duty Cycle 10\%)							
B	2000	2000	2000	1.0	3.0	7.0	3.5
C	1500	1500	1000	1.0	3.0	10.0	6.5
D	1000	1000	700	1.0	3.0	14.5	8.5
E	500	500	500	1.0	3.0	23.5	19.0

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in. The self-locking force is a minimum value and can be actually higher.

3 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24V DC; speed will be similar for both voltages.

4 The current \& speed in table are tested when the actuator is extending under push load.
5 The current \& speed in table and diagram are tested with a stable 24V DC power supply.
6 Without load, noise level $\leq 65 \mathrm{dBA}$ (by TiMOTION test standard, ambient noise level $\leq 36 \mathrm{dBA}$)
7 Standard stroke: Min. $\geq 20 \mathrm{~mm}$, Max. please refer to below table

CODE	Load (N)	Max Stroke (mm)
B	2000	500
C	1500	600
D	1000	800
E	500	1000

Performance Data (24V DC Motor)

Motor Speed (5600RPM, Duty Cycle 10\%)

Current vs. Load

Note

1 The performance data in the curve charts shows theoretical value

JP3

Voltage See page 8	$1=12 \mathrm{~V} D \mathrm{C}$	$2=24 V D C$	$5=24 \mathrm{~V}$ DC, PTC	$6=12 \mathrm{~V}$ DC, PTC
Load and Speed	See page 2			
Stroke (mm)	See page 2			
Retracted Length (mm)	See page 5			
Rear Attachment (mm)	1 = Aluminu	4.2, depth 18		

See page 6

Front Attachment	1 = Aluminum, slotless, hole 6.4			
(mm)	2 = Aluminum, slotless, hole 8.0			
See page 6	3 = Aluminum, U clevis, slot 6.0, depth 13.0, hole 10.0			
	$4=$ Aluminum, U clevis, slot 6.0, depth 13.0, hole 6.4			
	5 = Aluminum, U clevis, slot 6.0, depth 13.0, hole 8.0			
	6 = Aluminum, hole 10.0			
Direction of Rear Attachment (Counterclockwise)	$1=0^{\circ}$			
See page 7				
Color	1 = Black $2=$ Pantone 428C			
IP Rating	1 = Without	3 - PP66	$6=1$ P66M	8 = IP69K
	2 = IP54	$5=1 \mathrm{P} 66 \mathrm{~W}$	7 - PP68	

Special Function of Spindle Subassembly	$0=$ Without (Standard)
Function of Limit Switches	1 = Two micro switches cut off the actuator at end of stroke
	2 = Two micro switches cut off the actuator at end of stroke + third one in between sends signal
See page 7	3 = Two micro switches send signal at end of stroke
	4 = Two micro switches send signal at end of stroke + third one in between sends signal
Output Signal	$0=$ Without $\quad 2=$ Hall sensor*2
Connector	$1=$ DIN 6P, 90° plug $\quad 2=$ Tinned leads
See page 7	
Cable Length (mm)	$0=$ Straight, $100 \quad 1=$ Straight, $500 \quad 3=$ Straight, 1000

JP3 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B+C=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Front Attachment	
1,2,6	+217
3,4,5	+230
B. Stroke (mm)	
20~150	-
151~200	-
201~250	+5
251~300	+10
301~350	+15
351~400	+20
401~450	+25
451~500	+30
501~550	+35
551~600	+40
601~650	+45
651~700	+50
701~750	+55
751~800	+60
801~850	+65
851~900	+70
901~950	+75
951~1000	+80

C. Output Signal
0
2
+13
B. Stroke (mm)

20~150
151~200

451~500 +30

Rear Attachment (mm)

1 = Aluminum, U clevis, slot 4.2,
depth 18.0, hole 10.2

Front Attachment (mm)

1 = Aluminum, slotless, hole 6.4

5 = Aluminum, U clevis, slot 6.0, depth 13.0, hole 8.0

2 = Aluminum, slotless, hole 8.0

3 = Aluminum, U clevis, slot 6.0, depth 13.0, hole 10.0

4 = Aluminum, U clevis, slot 6.0, depth 13.0, hole 6.4

$6=$ Aluminum, hole 10.0

$\boxed{\boxed{0} .0}$

JP3 Ordering Key Appendix

Direction of Rear Attachment (Counterclockwise)

$1=0^{\circ}$

Functions for Limit Switches

Wire Definitions						
CODE	Pin					
	1 (Green)	2 (Red)	3 (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch

Connector

$1=\operatorname{DIN} 6 P, 90^{\circ}$ plug

2 = Tinned leads

JP3 Ordering Key Appendix

Voltage

$5=24 \mathrm{~V}$ DC, PTC

PTC outside the motor; at cable length 100 mm , min total cable $=250 \mathrm{~mm}$

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application. TiMOTION products are subject to change without prior notice.

