Positioning system QSSZ 60, 80

Belt drive

Function:

This linear unit consists of a square aluminium profile with integrated rail guidance. The carriage, which has runner blocks, is driven by a timing belt. Each standard pulley includes a coupling claw on one side and is equipped with maintenance-free ball bearings. Belt tension can be readjusted by a simple screw adjustment device in the carriage. This device can also be used for symmetrical adjustment of two or more linear units running parallel.

Fitting position: Carriage mounting:

As required. Max. length 3.000 mm without joints.

By T-slots.

Unit mounting: Belt performance: **Carriage support:**

By T-slots and mounting sets. The linear axis can be combined with any T-slot profile.

HTD with steel reinforcement, no backlash when changing direction, repeatability \pm 0,1 mm.

In the standard version, the carriage runs on 2 runner blocks which can be serviced at a central servicing position.

For longer carriages the number of runner blocks can be increased.

	Size		•	80							
Forces and torques			0								
	permitted dyn. forces*	5000 km	10000 km	5000 km	10000 km						
	F _× (N)	97	87	223	200						
Fz∥	F _v (N)	350	240	890	630						
√ Mz	F _z (N)	880	625	2100	1500						
	M _x (Nm)	8	6	26	18						
Mx Fx	M, (Nm)	26	18	77	55						
	M_z (Nm)	25	17	74	52						
Fy	All forces and torques related to the following:										
7	existing values Fy	Fz Fz		My <u> </u>	<1						
	table values Fy _{dyn}	Fz_{dyn}	Mx _{dyn} N	Ny _{dyn} Mz _d							
,	No-load torque										
	Nm	1	,0	1	,4						
	Speed										
	(m/s) max		3	3							
	Tensile force										
	permanent (N)	Life	time calculatio	ion see the internet							
	Geometrical moments of	Geometrical moments of inertia of aluminium profile									
	l _x mm ⁴			16,5	5x105						
	l _v mm⁴			18,7	7x105						
	Elastic modulus N/mm²			70	000						

* referred to life-time

$$M_a = \frac{F * P * S_i}{2000 * \pi} + M_n$$

$$P_a = \frac{M_a * n}{9550}$$

= force = pulley action perimeter = safety factor 1,2 ... 2

 $M_n = \text{no-load torque}$ = rpm pulley $M_a = driving torque$

= motor power

(N) (mm) (Nm)(min-1)

(Nm) (KW)

Positioning system QSSZ 60, 80

*For slide nuts refer to chapter 2.2 page 2

V = Q + 100 mm W = servicing position

Size	Basic length L	A	В	C1	C2	D -0,05	E	F	G	J	К	N for	Р	Q	т	х	Y	Basic weight	Weight per 100 mm
QSSZ 60	168	60	60	28	48	37	60	32	65	7,50	134,5	M 5	20	124	M 5	110	20	3,30 kg	0,47 kg
QSSZ 80	200	106	80	38	62	47	80	42	80	8	169	M 6	24	144	M 6	130	30	5,90 kg	1,02 kg

O Choice of guide body profile:

- (0) Standard (1) corrosion-protected screws
- (4) expanded corrosion-protected version (depending on the availability of components)

Size	н	H2	нз	Н4	M1	M2	мз
QSSZ 60	_	_	60	45	-	M6	M8
QSSZ 80	97	104	-	-	M6	M8	-

O Choice of carriages:

O Drive version:

Size	Shaft ø h6 x length	Key		
60	10 x 27	3x3x25		
80	14 x 35	5x5x28		

8 is as 0, but with coupling claws on both sides. The standard version is supplied without shaft. A shaft can be retrofitted by inserting it into the pulley bore and securing it with 2 locking rings.

Belt table / Coupling claw

Code		C:	Dala		Pulley	Caualina
N	No. Size Belt		mm/rev.	Number of teeth	Coupling	
0	3	60	60 5M15 100		20	9
0	7	80	5M25	130	26	14

Basic length + stroke = total length

For additional accessories refer to chapter 2.2 – 3.2

 QSSZ
 80
 1
 0
 0
 0
 0
 7
 1
 01500

 Pos.
 1
 2
 3
 4
 5
 6
 7

Sample ordering code:

QSSZ80, standard body profile, standard carriage, coupling claw on one side, 1300 mm stroke

